Python package for the Best Linear Unbiased Estimate (BLUE) method
Project description
BLUE method
A description of the BLUE method as implemented in this package can be found in
-
L. Lyons, D. Gibaut and P. Clifford, "How to Combine Correlated Estimates of a Single Physical Quantity", Nucl. Instrum. Meth. A 270 (1988) 110, doi:10.1016/0168-9002(88)90018-6.
-
A. Valassi, "Combining correlated measurements of several different physical quantities", Nucl. Instrum. Meth. A 500 (2003) 391, doi:10.1016/S0168-9002(03)00329-2.
Usage
- the examples directory contains different usage possibilities
basic_blue.py
: basic usage of the BLUE class (example in Nucl. Instrum. Meth. A 270 (1988) 110)from_correlation_matrix.py
: use uncertainties and correlation matrix as inputuncertainty_sources.py
: specify different uncertainty sources with individual correlationsreduced_correlations.py
: use the "reduced correlations" option (reduce a 100% correlation to rho = sigma_X/sigma_Y, assuming sigma_X <= sigma_Y)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Filename, size | File type | Python version | Upload date | Hashes |
---|---|---|---|---|
Filename, size blue_combine-0.2-py3-none-any.whl (16.6 kB) | File type Wheel | Python version py3 | Upload date | Hashes View |
Filename, size blue_combine-0.2.tar.gz (2.9 kB) | File type Source | Python version None | Upload date | Hashes View |
Close
Hashes for blue_combine-0.2-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3c224ec7374df040f515958ec87b1926635f2db7feb4811ebbb0db3539e4a5ee |
|
MD5 | ef06a8512e32ecb608fd2a92de88563f |
|
BLAKE2-256 | 0e985fbf7f2de57ab806bc692b16162e6910fc776fcd8105b5f605a8a6043f93 |