Skip to main content

Quantum Computer Library for Everyone

Project description

Logo

blueqat

A Quantum Computing SDK

Version

Version

Tutorial

https://github.com/Blueqat/Blueqat-tutorials

Notice

The back end has been changed to tensor network. The previous backend environment can still be used with .run(backend="numpy").

Install

git clone https://github.com/Blueqat/Blueqat
cd Blueqat
pip3 install -e .

or

pip3 install blueqat

Circuit

from blueqat import Circuit
import math

#number of qubit is not specified
c = Circuit()

#if you want to specified the number of qubit
c = Circuit(50) #50qubits

Method Chain

# write as chain
Circuit().h[0].x[0].z[0]

# write in separately
c = Circuit().h[0]
c.x[0].z[0]

Slice

Circuit().z[1:3] # Zgate on 1,2
Circuit().x[:3] # Xgate on (0, 1, 2)
Circuit().h[:] # Hgate on all qubits
Circuit().x[1, 2] # 1qubit gate with comma

Rotation Gate

Circuit().rz(math.pi / 4)[0]

Run

from blueqat import Circuit
Circuit(50).h[:].run()

Run(shots=n)

Circuit(100).x[:].run(shots=100)
# => Counter({'1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111': 100})

Single Amplitude

Circuit(4).h[:].run(amplitude="0101")

Expectation value of hamiltonian

from blueqat.pauli import Z
hamiltonian = 1*Z[0]+1*Z[1]
Circuit(4).x[:].run(hamiltonian=hamiltonian)
# => -2.0

Blueqat to QASM

Circuit().h[0].to_qasm()
    
#OPENQASM 2.0;
#include "qelib1.inc";
#qreg q[1];
#creg c[1];
#h q[0];

Hamiltonian

from blueqat.pauli import *

hamiltonian1 = (1.23 * Z[0] + 4.56 * X[1] * Z[2]) ** 2
hamiltonian2 = (2.46 * Y[0] + 5.55 * Z[1] * X[2] * X[1]) ** 2
hamiltonian = hamiltonian1 + hamiltonian2
print(hamiltonian)
    
# => 7.5645*I + 5.6088*Z[0]*X[1]*Z[2] + 5.6088*X[1]*Z[2]*Z[0] + 20.793599999999998*X[1]*Z[2]*X[1]*Z[2] + 13.652999999999999*Y[0]*Z[1]*X[2]*X[1] + 13.652999999999999*Z[1]*X[2]*X[1]*Y[0] + 30.8025*Z[1]*X[2]*X[1]*Z[1]*X[2]*X[1]

Simplify the Hamiltonian

hamiltonian = hamiltonian.simplify()
print(hamiltonian)

#=>-2.4444000000000017*I + 27.305999999999997j*Y[0]*Y[1]*X[2] + 11.2176*Z[0]*X[1]*Z[2]

QUBO Hamiltonian

from blueqat.pauli import qubo_bit as q

hamiltonian = -3*q(0)-3*q(1)-3*q(2)-3*q(3)-3*q(4)+2*q(0)*q(1)+2*q(0)*q(2)+2*q(0)*q(3)+2*q(0)*q(4)
print(hamiltonian)
    
# => -5.5*I + 1.0*Z[1] + 1.0*Z[2] + 1.0*Z[3] + 1.0*Z[4] + 0.5*Z[0]*Z[1] + 0.5*Z[0]*Z[2] + 0.5*Z[0]*Z[3] - 0.5*Z[0] + 0.5*Z[0]*Z[4]

Time Evolution

hamiltonian = [1.0*Z(0), 1.0*X[0]]
a = [term.get_time_evolution() for term in hamiltonian]

time_evolution = Circuit().h[0]
for evo in a:
    evo(time_evolution, np.random.rand())
    
print(time_evolution)

# => Circuit(1).h[0].rz(-1.4543063361067243)[0].h[0].rz(-1.8400416676737137)[0].h[0]

QAOA

from blueqat import Circuit
from blueqat.utils import qaoa
from blueqat.pauli import qubo_bit as q
from blueqat.pauli import X,Y,Z,I

hamiltonian = q(0)-q(1)
step = 1

result = qaoa(hamiltonian, step)
result.circuit.run(shots=100)
    
# => Counter({'01': 99, '11': 1})

Circuit Drawing Backend

from blueqat import vqe
from blueqat.pauli import *
from blueqat.pauli import qubo_bit as q

#hamiltonian = q(0)-3*q(1)+2*q(0)*q(1)+3*q(2)*q(3)+q(4)*q(7)
hamiltonian = Z[0]-3*Z[1]+2*Z[0]*Z[1]+3*Z[2]*Z[3]+Z[4]
step = 8

result = vqe.Vqe(vqe.QaoaAnsatz(hamiltonian, step)).run()
result.circuit.run(backend='draw')

draw

Cloud System Connection (API Key is required)

from bqcloud import register_api
api = register_api("Your API Key")

from bqcloud import load_api
api = load_api()

from blueqat import Circuit
from bqcloud import Device

task = api.execute(Circuit().h[0].cx[0, 1], Device.IonQDevice, 10)
#task = api.execute(Circuit().h[0].cx[0, 1], Device.AspenM1, 10)

# Wait 10 sec. If complete, result is returned, otherwise, None is returned.
result = task.wait(timeout=10)

if result:
    print(result.shots())
else:
    print("timeout")

Document

https://blueqat.readthedocs.io/en/latest/

Contributors

Contributors

Disclaimer

Copyright 2022 The Blueqat Developers.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

blueqat-2.0.4.tar.gz (54.9 kB view details)

Uploaded Source

Built Distribution

blueqat-2.0.4-py3-none-any.whl (68.9 kB view details)

Uploaded Python 3

File details

Details for the file blueqat-2.0.4.tar.gz.

File metadata

  • Download URL: blueqat-2.0.4.tar.gz
  • Upload date:
  • Size: 54.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for blueqat-2.0.4.tar.gz
Algorithm Hash digest
SHA256 fca9bd17716566487452749ac0cb06cf4eb43fffdb33fc87231481371860ba55
MD5 177de29a40fb593f4ae5136830b07c06
BLAKE2b-256 b4d958aebf50fc2f1f52363680ee70936c677789963fa329b4768a0c7f911a96

See more details on using hashes here.

File details

Details for the file blueqat-2.0.4-py3-none-any.whl.

File metadata

  • Download URL: blueqat-2.0.4-py3-none-any.whl
  • Upload date:
  • Size: 68.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for blueqat-2.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 82017bff22364f57e17e7e834749f7540bebb9a290aad2b7e007d4993826c625
MD5 531b5d7cd28e08f1c1539f3dc48b0441
BLAKE2b-256 e015cb1b329d2ab2e1d3428f9e7a1dea8bfa8248108e6d9923835dca6d441d9a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page