Data aggregation pipeline for running real-time predictive models
Project description
![Blurr](logo.png)
>We believe in a world where everyone is a data engineer. Or a data scientist. Or an ML engineer. The lines are blurred (*cough*). Just like development and operations became DevOps over time
>-- Blurr authors
[![CircleCI](https://circleci.com/gh/productml/blurr/tree/master.svg?style=svg)](https://circleci.com/gh/productml/blurr/tree/master)
[![Documentation Status](https://readthedocs.org/projects/productml-blurr/badge/?version=latest)](http://productml-blurr.readthedocs.io/en/latest/?badge=latest)
Blurr transforms `raw data` into `features` for model training and prediction using a `high-level expressive YAML-based language` called the Data Transform Configuration (DTC).
For production ML applications, __experimentation__ and __iteration speed__ is important. Working directly with raw data provides the most flexibility. Blurr allows product teams to iterate quickly during ML dev and provides a self-service way to take experiments to production.
![Data Transformer](docs/images/data-transformer.png)
# Table of contents
- [DTC at a glance](#dtc-at-a-glance)
- [Tutorial & Docs](#tutorial-and-docs)
- [Install](#use-blurr)
- [Contribute](#contribute-to-blurr)
- [Data Science 'Joel Test'](#data-science-joel-test)
- [Roadmap](#roadmap)
# DTC at a glance
Raw data like this
```javascript
{ "user_id": "09C1", "session_id": "915D", "country" : "US", "event_id": "game_start" }
{ "user_id": "09C1", "session_id": "915D", "country" : "US", "event_id": "game_end", "won": 1 }
{ "user_id": "09C1", "session_id": "915D", "country" : "US", "event_id": "game_start" }
{ "user_id": "09C1", "session_id": "915D", "country" : "US", "event_id": "game_end", "won": 1 }
{ "user_id": "B6FA", "session_id": "D043", "country" : "US", "event_id": "game_start" }
{ "user_id": "B6FA", "session_id": "D043", "country" : "US", "event_id": "game_end", "won": 1 }
{ "user_id": "09C1", "session_id": "T8KA", "country" : "UK", "event_id": "game_start" }
{ "user_id": "09C1", "session_id": "T8KA", "country" : "UK", "event_id": "game_end", "won": 1 }
```
turns into
session_id | user_id | games_played | games_won
--- | ------------ | -------------- | --------
915D | 09C1 | 2 | 2
D043 | B6FA | 1 | 1
T8KA | 09C1 | 1 | 1
using this DTC
```yaml
Type: Blurr:Streaming
Version: '2018-03-07'
Store:
- Type: Blurr:Store:MemoryStore
Name: hello_world_store
Identity: source.user_id
DataGroups:
- Type: Blurr:DataGroup:BlockAggregate
Name: session_stats
Store: hello_world_store
Split: source.session_id != session_stats.session_id
Fields:
- Name: session_id
Type: string
Value: source.session_id
- Name: games_played
Type: integer
Value: session_stats.games_played + 1
When: source.event_id == 'game_start'
- Name: games_won
Type: integer
Value: session_stats.games_won + 1
When: source.event_id == 'game_end' and source.won == '1'
```
# Tutorial and Docs
[Read the docs](http://productml-blurr.readthedocs.io/en/latest/)
[Streaming DTC Tutorial](http://productml-blurr.readthedocs.io/en/latest/Streaming%20dtc%20tutorial/) |
[Window DTC Tutorial](http://productml-blurr.readthedocs.io/en/latest/Window%20dtc%20tutorial/)
Preparing data for specific use cases using Blurr
[Dynamic in-game offers (Offer AI)](examples/offer-ai/offer-ai-walkthrough.md) | [Frequently Bought Together](examples/frequently-bought-together/fbt-walkthrough.md)
# Use Blurr
We interact with Blurr using a Command Line Interface (CLI). Blurr is installed via pip:
`$ pip install blurr`
Transform data
```
$ blurr transform \
--streaming-dtc ./dtcs/sessionize-dtc.yml \
--window-dtc ./dtcs/windowing-dtc.yml \
--source file://path
```
[CLI documentation](http://productml-blurr.readthedocs.io/en/latest/Blurr%20CLI/)
# Contribute to Blurr
Welcome to the Blurr community! We are so glad that you share our passion for making data management and machine learning accessible to everyone.
Please create a [new issue](https://github.com/productml/blurr/issues/new) to begin a discussion. Alternatively, feel free to pick up an existing issue!
Please sign the [Contributor License Agreement](https://docs.google.com/forms/d/e/1FAIpQLSeUP5RFuXH0Kbi4CnV6V3IZ-xyJmd3KQP_2Ij-pTvN-_h7wUg/viewform) before raising a pull request.
# Data Science 'Joel Test'
Inspired by the (old school) [Joel Test](https://www.joelonsoftware.com/2000/08/09/the-joel-test-12-steps-to-better-code/) to rate software teams, here's our version for data science teams. What's your score? We'd love to know!
1. Data pipelines are versioned and reproducible
2. Pipelines (re)build in one step
3. Deploying to production needs minimal engineering help
4. Successful ML is a long game. You play it like it is
5. Kaizen. Experimentation and iterations are a way of life
__Stay in touch!__ Star this project or email hello@blurr.ai
# Roadmap
Blurr is all about enabling machine learning and AI teams to run faster.
**Developer Preview 0**: Local transformations only
**Developer Preview 1**: S3-S3 data transformations
**Developer Preview 2**: Add DynamoDB as a Store + Features server for ML production use
Ingestion connectors to Kafka and Spark
>We believe in a world where everyone is a data engineer. Or a data scientist. Or an ML engineer. The lines are blurred (*cough*). Just like development and operations became DevOps over time
>-- Blurr authors
[![CircleCI](https://circleci.com/gh/productml/blurr/tree/master.svg?style=svg)](https://circleci.com/gh/productml/blurr/tree/master)
[![Documentation Status](https://readthedocs.org/projects/productml-blurr/badge/?version=latest)](http://productml-blurr.readthedocs.io/en/latest/?badge=latest)
Blurr transforms `raw data` into `features` for model training and prediction using a `high-level expressive YAML-based language` called the Data Transform Configuration (DTC).
For production ML applications, __experimentation__ and __iteration speed__ is important. Working directly with raw data provides the most flexibility. Blurr allows product teams to iterate quickly during ML dev and provides a self-service way to take experiments to production.
![Data Transformer](docs/images/data-transformer.png)
# Table of contents
- [DTC at a glance](#dtc-at-a-glance)
- [Tutorial & Docs](#tutorial-and-docs)
- [Install](#use-blurr)
- [Contribute](#contribute-to-blurr)
- [Data Science 'Joel Test'](#data-science-joel-test)
- [Roadmap](#roadmap)
# DTC at a glance
Raw data like this
```javascript
{ "user_id": "09C1", "session_id": "915D", "country" : "US", "event_id": "game_start" }
{ "user_id": "09C1", "session_id": "915D", "country" : "US", "event_id": "game_end", "won": 1 }
{ "user_id": "09C1", "session_id": "915D", "country" : "US", "event_id": "game_start" }
{ "user_id": "09C1", "session_id": "915D", "country" : "US", "event_id": "game_end", "won": 1 }
{ "user_id": "B6FA", "session_id": "D043", "country" : "US", "event_id": "game_start" }
{ "user_id": "B6FA", "session_id": "D043", "country" : "US", "event_id": "game_end", "won": 1 }
{ "user_id": "09C1", "session_id": "T8KA", "country" : "UK", "event_id": "game_start" }
{ "user_id": "09C1", "session_id": "T8KA", "country" : "UK", "event_id": "game_end", "won": 1 }
```
turns into
session_id | user_id | games_played | games_won
--- | ------------ | -------------- | --------
915D | 09C1 | 2 | 2
D043 | B6FA | 1 | 1
T8KA | 09C1 | 1 | 1
using this DTC
```yaml
Type: Blurr:Streaming
Version: '2018-03-07'
Store:
- Type: Blurr:Store:MemoryStore
Name: hello_world_store
Identity: source.user_id
DataGroups:
- Type: Blurr:DataGroup:BlockAggregate
Name: session_stats
Store: hello_world_store
Split: source.session_id != session_stats.session_id
Fields:
- Name: session_id
Type: string
Value: source.session_id
- Name: games_played
Type: integer
Value: session_stats.games_played + 1
When: source.event_id == 'game_start'
- Name: games_won
Type: integer
Value: session_stats.games_won + 1
When: source.event_id == 'game_end' and source.won == '1'
```
# Tutorial and Docs
[Read the docs](http://productml-blurr.readthedocs.io/en/latest/)
[Streaming DTC Tutorial](http://productml-blurr.readthedocs.io/en/latest/Streaming%20dtc%20tutorial/) |
[Window DTC Tutorial](http://productml-blurr.readthedocs.io/en/latest/Window%20dtc%20tutorial/)
Preparing data for specific use cases using Blurr
[Dynamic in-game offers (Offer AI)](examples/offer-ai/offer-ai-walkthrough.md) | [Frequently Bought Together](examples/frequently-bought-together/fbt-walkthrough.md)
# Use Blurr
We interact with Blurr using a Command Line Interface (CLI). Blurr is installed via pip:
`$ pip install blurr`
Transform data
```
$ blurr transform \
--streaming-dtc ./dtcs/sessionize-dtc.yml \
--window-dtc ./dtcs/windowing-dtc.yml \
--source file://path
```
[CLI documentation](http://productml-blurr.readthedocs.io/en/latest/Blurr%20CLI/)
# Contribute to Blurr
Welcome to the Blurr community! We are so glad that you share our passion for making data management and machine learning accessible to everyone.
Please create a [new issue](https://github.com/productml/blurr/issues/new) to begin a discussion. Alternatively, feel free to pick up an existing issue!
Please sign the [Contributor License Agreement](https://docs.google.com/forms/d/e/1FAIpQLSeUP5RFuXH0Kbi4CnV6V3IZ-xyJmd3KQP_2Ij-pTvN-_h7wUg/viewform) before raising a pull request.
# Data Science 'Joel Test'
Inspired by the (old school) [Joel Test](https://www.joelonsoftware.com/2000/08/09/the-joel-test-12-steps-to-better-code/) to rate software teams, here's our version for data science teams. What's your score? We'd love to know!
1. Data pipelines are versioned and reproducible
2. Pipelines (re)build in one step
3. Deploying to production needs minimal engineering help
4. Successful ML is a long game. You play it like it is
5. Kaizen. Experimentation and iterations are a way of life
__Stay in touch!__ Star this project or email hello@blurr.ai
# Roadmap
Blurr is all about enabling machine learning and AI teams to run faster.
**Developer Preview 0**: Local transformations only
**Developer Preview 1**: S3-S3 data transformations
**Developer Preview 2**: Add DynamoDB as a Store + Features server for ML production use
Ingestion connectors to Kafka and Spark
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
blurr-dev-0.324.tar.gz
(4.4 kB
view details)
Built Distribution
File details
Details for the file blurr-dev-0.324.tar.gz
.
File metadata
- Download URL: blurr-dev-0.324.tar.gz
- Upload date:
- Size: 4.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d1f0bae764105933aa8e9dbfabc6bbd793e548e5754352f670ecf6f441bb5fde |
|
MD5 | 029e8f64fdfae61ae18b6ffc51fb0cf7 |
|
BLAKE2b-256 | 98ea293455bf98b48bf7de7245a7ff0be112561f06e56296279eebe099699936 |
File details
Details for the file blurr_dev-0.324-py3-none-any.whl
.
File metadata
- Download URL: blurr_dev-0.324-py3-none-any.whl
- Upload date:
- Size: 3.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 33385d4d15959f7a2d6672d84310881c2df5f5711ae5e591cf68421166eadbbd |
|
MD5 | 16f5373cd53e6750d7b61a47b4843830 |
|
BLAKE2b-256 | 4661d6d63b3c23a845f4f30cbfef8959b138f6013f1c52029cf4a2770f755986 |