Skip to main content

BMI implementation for datasets from National Water Information System https://waterdata.usgs.gov/nwis?

Project description

bmi_nwis

Documentation Status MIT license Binder

bmi_nwis package is an implementation of the Basic Model Interface (BMI) for the USGS NWIS dataset. This package uses the dataretrieval package to download the NWIS dataset and wraps the dataset with BMI for data control and query.

This package is not implemented for people to use but is the key element to convert the NWIS dataset into a data component (pymt_nwis) for the PyMT modeling framework developed by Community Surface Dynamics Modeling System (CSDMS).

Please note that the current bmi_nwis implementation only supports to download time series data for instantaneous values and daily mean values ('iv' or 'dv' service option in the dataretrieval package). If you have any suggestion to improve the current function, please create a github issue here.

Get Started

Install package

Stable Release

The bmi_nwis package and its dependencies can be installed with pip.

$ pip install bmi_nwis
From Source

After downloading the source code, run the following command from top-level folder (the one that contains setup.py) to install bmi_nwis.

$ pip install -e .

Download NWIS Data

You can learn more details from the tutorial notebook and launch binder to run the notebook.

Example 1: use the dataretrieval package to download data
import dataretrieval.nwis as nwis                                 

# get data from NWIS
dataset = nwis.get_record(sites='03339000', service='iv', start='2022-01-01', end='2022-01-03')

# plot data
ax = dataset.plot(y=['00060','00065'], subplots=True, figsize=(10,8), 
                  xlabel='Time', title = 'Time Series Data at USGS Gage 03339000')
ax[0].set_ylabel('Stream flow (ft3/s)')
ax[1].set_ylabel('Gage height (ft)')

ts_plot

Example 2: use BmiNwis class to download data (Demonstration of how to use BMI)
import numpy as np
import cftime
import pandas as pd

from bmi_nwis import BmiNwis


# initiate a data component
data_comp = BmiNwis()
data_comp.initialize('config_file.yaml')

# get variable info
for var_name in  data_comp.get_output_var_names():
    var_unit = data_comp.get_var_units(var_name)
    var_location = data_comp.get_var_location(var_name)
    var_type = data_comp.get_var_type(var_name)
    var_grid = data_comp.get_var_grid(var_name)
    var_itemsize = data_comp.get_var_itemsize(var_name)
    var_nbytes = data_comp.get_var_nbytes(var_name)
    print('variable_name: {} \nvar_unit: {} \nvar_location: {} \nvar_type: {} \nvar_grid: {} \nvar_itemsize: {}' 
            '\nvar_nbytes: {} \n'. format(var_name, var_unit, var_location, var_type, var_grid, var_itemsize, var_nbytes))

# get time info
start_time = data_comp.get_start_time()
end_time = data_comp.get_end_time()
time_step = data_comp.get_time_step()
time_unit = data_comp.get_time_units()
time_steps = int((end_time - start_time)/time_step) + 1
print('start_time:{} \nend_time:{} \ntime_step:{} \ntime_unit:{} \ntime_steps:{} \n'.format(start_time, end_time, time_step, time_unit, time_steps))

# get variable grid info
grid_type = data_comp.get_grid_type(var_grid)
grid_rank = data_comp.get_grid_rank(var_grid) 
grid_node_count = data_comp.get_grid_node_count(var_grid)

site_lon = np.empty(grid_node_count)
data_comp.get_grid_x(var_grid, site_lon)

site_lat = np.empty(grid_node_count)
data_comp.get_grid_y(var_grid, site_lat)

print('grid_type: {} \ngrid_rank: {} \ngrid_node_count: {} \nsite_lon: {} \nsite_lat: {} \n'.format(
    grid_type, grid_rank, grid_node_count, site_lon[0], site_lat[0]))

# initiate dataframe to store data
dataset = pd.DataFrame(columns = ['00060','00065','time'])

for i in range(0, time_steps):
    # get stream flow data
    stream_flow = np.empty(1)
    data_comp.get_value('Stream flow', stream_flow)

    # get gage height data
    gage_height = np.empty(1)
    data_comp.get_value('Height', gage_height)

    # get time data
    cftime_value= data_comp.get_current_time()   
    time = cftime.num2pydate(cftime_value, time_unit)

    # add new row to dataframe
    dataset.loc[len(dataset)]=[stream_flow[0], gage_height[0], time]

    # update to next time step
    data_comp.update()

# convert time to local time
dataset = dataset.set_index('time').tz_localize(tz='UTC').tz_convert(tz='US/Central')

# plot data
ax = dataset.plot(y=['00060','00065'], subplots=True, figsize=(10,8), 
                  xlabel='Time', title = 'Time Series Data at USGS Gage 03339000')
ax[0].set_ylabel('Stream flow (ft3/s)')
ax[1].set_ylabel('Gage height (ft)')

Project details


Release history Release notifications | RSS feed

This version

0.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

bmi_nwis-0.1-py3-none-any.whl (11.5 kB view details)

Uploaded Python 3

File details

Details for the file bmi_nwis-0.1-py3-none-any.whl.

File metadata

  • Download URL: bmi_nwis-0.1-py3-none-any.whl
  • Upload date:
  • Size: 11.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.0.0.post20200309 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.7.6

File hashes

Hashes for bmi_nwis-0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 d2166a745c6badd0e54edab36ba1f7a51bc6139c34ecb5d2116fb95594192995
MD5 f12c78c7dbaaf510c7e770e1a494f932
BLAKE2b-256 f74886a096f7719f231903e6478c75fbc301d96bc3590e7288dbd51a9776cc42

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page