BMI implementation for ROMS model data https://www.myroms.org/
Project description
bmi_roms
bmi_roms package is an implementation of the Basic Model Interface (BMI) for the ROMS model datasets. This package wraps the dataset with BMI for data control and query. This package is not implemented for people to use but is the key element to convert the ROMS dataset into a data component (pymt_roms) for the PyMT modeling framework developed by Community Surface Dynamics Modeling System (CSDMS).
The current implementation supports 2D, 3D and 4D ROMS output datasets defined with geospatial and/or time dimensions (e.g., dataset defined with dimensions as [time, s_rho, eta_rho, xi_rho])
If you have any suggestion to improve the current function, please create a github issue here.
Get Started
Install package
Stable Release
The bmi_roms package and its dependencies can be installed with pip
$ pip install bmi_roms
or conda
$ conda install -c conda-forge bmi_roms
From Source
After downloading the source code, run the following command from top-level folder (the one that contains setup.py) to install bmi_roms.
$ pip install -e .
Code Example
Learn more details from the tutorial notebook provided in this package and launch binder to run the notebook.
from bmi_roms import BmiRoms
import numpy as np
import matplotlib.pyplot as plt
data_comp = BmiRoms()
data_comp.initialize('config_file.yaml')
# get variable info
for var_name in data_comp.get_output_var_names():
var_unit = data_comp.get_var_units(var_name)
var_location = data_comp.get_var_location(var_name)
var_type = data_comp.get_var_type(var_name)
var_grid = data_comp.get_var_grid(var_name)
var_itemsize = data_comp.get_var_itemsize(var_name)
var_nbytes = data_comp.get_var_nbytes(var_name)
print('variable_name: {} \nvar_unit: {} \nvar_location: {} \nvar_type: {} \nvar_grid: {} \nvar_itemsize: {}'
'\nvar_nbytes: {} \n'. format(var_name, var_unit, var_location, var_type, var_grid, var_itemsize, var_nbytes))
# get time info
start_time = data_comp.get_start_time()
end_time = data_comp.get_end_time()
time_step = data_comp.get_time_step()
time_unit = data_comp.get_time_units()
time_steps = int((end_time - start_time)/time_step) + 1
print('start_time:{} \nend_time:{} \ntime_step:{} \ntime_unit:{} \ntime_steps:{} \n'.format(
start_time, end_time, time_step, time_unit, time_steps))
# get variable grid info
for var_name in data_comp.get_output_var_names():
var_grid = data_comp.get_var_grid(var_name)
grid_rank = data_comp.get_grid_rank(var_grid)
grid_size = data_comp.get_grid_size(var_grid)
grid_shape = np.empty(grid_rank, int)
data_comp.get_grid_shape(var_grid, grid_shape)
grid_spacing = np.empty(grid_rank)
data_comp.get_grid_spacing(var_grid, grid_spacing)
grid_origin = np.empty(grid_rank)
data_comp.get_grid_origin(var_grid, grid_origin)
print('var_name: {} \ngrid_id: {}\ngrid_rank: {} \ngrid_size: {} \ngrid_shape: {} \ngrid_spacing: {} \ngrid_origin: {} \n'.format(
var_name, var_grid, grid_rank, grid_size, grid_shape, grid_spacing, grid_origin))
# get variable data
data = np.empty(1026080, 'float64')
data_comp.get_value('time-averaged salinity', data)
data_3D = data.reshape([40, 106, 242])
# get lon and lat data
lat = np.empty(25652, 'float64')
data_comp.get_value('latitude of RHO-points', lat)
lon = np.empty(25652, 'float64')
data_comp.get_value('longitude of RHO-points', lon)
# make a contour plot
fig = plt.figure(figsize=(10,7))
im = plt.contourf(lon.reshape([106, 242]), lat.reshape([106, 242]), data_3D[0], levels=36)
fig.colorbar(im)
plt.axis('equal')
plt.xlabel('Longitude [degree_east]')
plt.ylabel('Latitude [degree_north]')
plt.title('ROMS model data of time-averaged salinity')
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file bmi_roms-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: bmi_roms-0.1.0-py3-none-any.whl
- Upload date:
- Size: 11.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4dd0daf698b5a610a33d740cf2a50241b82af41aa3176c079dc5ee1247b261ad |
|
MD5 | cab9733cd711261ec4cebef9ee28a21a |
|
BLAKE2b-256 | ff5a99b63b3ffff3c4e3d8679b89177760b9f0db61098485948caf9c22e12018 |