Skip to main content

BMI implementation for ROMS model data https://www.myroms.org/

Project description

bmi_roms

Documentation Status MIT license Binder

bmi_roms package is an implementation of the Basic Model Interface (BMI) for the ROMS model datasets. This package wraps the dataset with BMI for data control and query. This package is not implemented for people to use but is the key element to convert the ROMS dataset into a data component (pymt_roms) for the PyMT modeling framework developed by Community Surface Dynamics Modeling System (CSDMS).

The current implementation supports 2D, 3D and 4D ROMS output datasets defined with geospatial and/or time dimensions (e.g., dataset defined with dimensions as [time, s_rho, eta_rho, xi_rho])

If you have any suggestion to improve the current function, please create a github issue here.

Get Started

Install package

Stable Release

The bmi_roms package and its dependencies can be installed with pip

$ pip install bmi_roms

or conda

$ conda install -c conda-forge bmi_roms 
From Source

After downloading the source code, run the following command from top-level folder (the one that contains setup.py) to install bmi_roms.

$ pip install -e .

Code Example

Learn more details from the tutorial notebook provided in this package and launch binder to run the notebook.

from bmi_roms import BmiRoms
import numpy as np
import matplotlib.pyplot as plt

data_comp = BmiRoms()
data_comp.initialize('config_file.yaml')

# get variable info
for var_name in  data_comp.get_output_var_names():
    var_unit = data_comp.get_var_units(var_name)
    var_location = data_comp.get_var_location(var_name)
    var_type = data_comp.get_var_type(var_name)
    var_grid = data_comp.get_var_grid(var_name)
    var_itemsize = data_comp.get_var_itemsize(var_name)
    var_nbytes = data_comp.get_var_nbytes(var_name)
    print('variable_name: {} \nvar_unit: {} \nvar_location: {} \nvar_type: {} \nvar_grid: {} \nvar_itemsize: {}' 
            '\nvar_nbytes: {} \n'. format(var_name, var_unit, var_location, var_type, var_grid, var_itemsize, var_nbytes))

# get time info
start_time = data_comp.get_start_time()
end_time = data_comp.get_end_time()
time_step = data_comp.get_time_step()
time_unit = data_comp.get_time_units()
time_steps = int((end_time - start_time)/time_step) + 1
print('start_time:{} \nend_time:{} \ntime_step:{} \ntime_unit:{} \ntime_steps:{} \n'.format(
    start_time, end_time, time_step, time_unit, time_steps))

# get variable grid info 
for var_name in data_comp.get_output_var_names():
    var_grid = data_comp.get_var_grid(var_name)
    
    grid_rank = data_comp.get_grid_rank(var_grid) 
    grid_size = data_comp.get_grid_size(var_grid)
    
    grid_shape = np.empty(grid_rank, int)
    data_comp.get_grid_shape(var_grid, grid_shape)
    
    grid_spacing = np.empty(grid_rank)
    data_comp.get_grid_spacing(var_grid, grid_spacing)
    
    grid_origin = np.empty(grid_rank)
    data_comp.get_grid_origin(var_grid, grid_origin)
    
    print('var_name: {} \ngrid_id: {}\ngrid_rank: {} \ngrid_size: {} \ngrid_shape: {} \ngrid_spacing: {} \ngrid_origin: {} \n'.format(
        var_name, var_grid, grid_rank, grid_size, grid_shape, grid_spacing, grid_origin))

# get variable data 
data = np.empty(1026080, 'float64')
data_comp.get_value('time-averaged salinity', data)
data_3D = data.reshape([40, 106, 242])

# get lon and lat data
lat = np.empty(25652, 'float64')
data_comp.get_value('latitude of RHO-points', lat)

lon = np.empty(25652, 'float64')
data_comp.get_value('longitude of RHO-points', lon)

# make a contour plot
fig = plt.figure(figsize=(10,7))
im = plt.contourf(lon.reshape([106, 242]), lat.reshape([106, 242]), data_3D[0], levels=36)
fig.colorbar(im)
plt.axis('equal')
plt.xlabel('Longitude [degree_east]')
plt.ylabel('Latitude [degree_north]')
plt.title('ROMS model data of time-averaged salinity')

plot

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

bmi_roms-0.1.0-py3-none-any.whl (11.6 kB view details)

Uploaded Python 3

File details

Details for the file bmi_roms-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: bmi_roms-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 11.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for bmi_roms-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 4dd0daf698b5a610a33d740cf2a50241b82af41aa3176c079dc5ee1247b261ad
MD5 cab9733cd711261ec4cebef9ee28a21a
BLAKE2b-256 ff5a99b63b3ffff3c4e3d8679b89177760b9f0db61098485948caf9c22e12018

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page