Skip to main content

No project description provided

Project description

Bangla Feature Extractor(BnFeatureExtraction)

BnFeatureExtraction is a Bangla Natural Language Processing based feature extractor.

Feature Extraction

  1. CountVectorizer
  2. HashVectorizer
  3. TfIdf
  4. Word Embedding

Installation

pip install BnFeatureExtraction

Example

1. CountVectorizer

  • Fit n Transform
  • Transform
  • Get Wordset

Fit n Transform

from BnFeatureExtraction import CountVectorizer
ct = CountVectorizer()
X = ct.fit_transform(X) # X is the word features

Output:

the countVectorized matrix form of given features

Transform

from BnFeatureExtraction import CountVectorizer
ct = CountVectorizer()
get_mat = ct.transform("রাহাত")

Output:

the countVectorized matrix form of given word

Get Wordset

from BnFeatureExtraction import CountVectorizer
ct = CountVectorizer()
ct.get_wordSet()

Output:

get the raw wordset used in training model

2. HashVectorizer

  • Fit n Transform
  • Transform
from BnFeatureExtraction import HashVectorizer
corpus = [
'আমাদের দেশ বাংলাদেশ', 'আমার বাংলা'
]
Vectorizer = HashVectorizer()
n_features = 8
X = Vectorizer.fit_transform(corpus, n_features)
corpus_t = ["আমাদের দেশ অনেক সুন্দর"]
Xf = Vectorizer.transform(corpus_t)

print(X.shape, Xf.shape)
print("=====================================")
print(X)
print("=====================================")
print(Xf)

Output:

(2, 8) (1, 8)
=====================================
  (0, 7)	-1.0
  (1, 7)	-1.0
=====================================
  (0, 0)	0.5773502691896258
  (0, 2)	0.5773502691896258
  (0, 7)	-0.5773502691896258

Get Wordset

3. TfIdf

  • Fit n Transform
  • Transform
  • Coefficients

Fit n Transform

from BnFeatureExtraction import TfIdfVectorizer
k = TfIdfVectorizer()
doc = ["কাওছার আহমেদ", "শুভ হাইদার"]
matrix1 = k.fit_transform(doc)
print(matrix1)

Output:

[[0.150515 0.150515 0.       0.      ]
 [0.       0.       0.150515 0.150515]]

Transform

from BnFeatureExtraction import TfIdfVectorizer
k = TfIdfVectorizer()
doc = ["আহমেদ সুমন", "কাওছার করিম"]
matrix2 = k.transform(doc)
print(matrix2)

Output:

[[0.150515 0.       0.       0.      ]
 [0.       0.150515 0.       0.      ]]

Coefficients

from BnFeatureExtraction import TfIdfVectorizer
k = TfIdfVectorizer()
doc = ["কাওছার আহমেদ", "শুভ হাইদার"]
k.fit_transform(doc)
wordset, idf = k.coefficients()
print(wordset)
#Output: ['আহমেদ', 'কাওছার', 'হাইদার', 'শুভ']

print(idf)
'''
Output: 
{'আহমেদ': 0.3010299956639812, 'কাওছার': 0.3010299956639812, 'হাইদার': 0.3010299956639812, 'শুভ': 0.3010299956639812}
'''

4. Word Embedding

  • Word2Vec

    • Training
    • Get Word Vector
    • Get Similarity
    • Get n Similar Words
    • Get Middle Word
    • Get Odd Words
    • Get Similarity Plot

Training

from BnFeatureExtraction import BN_Word2Vec
#Training Against Sentences
w2v = BN_Word2Vec(sentences=[['আমার', 'প্রিয়', 'জন্মভূমি'], ['বাংলা', 'আমার', 'মাতৃভাষা'],['আমার', 'প্রিয়', 'জন্মভূমি'], ['বাংলা', 'আমার', 'মাতৃভাষা'],['আমার', 'প্রিয়', 'জন্মভূমি'], ['বাংলা', 'আমার', 'মাতৃভাষা']])
w2v.train()

#Training Against one Text Corpus
w2v = BN_Word2Vec(corpus_file="path_to_corpus.txt")
w2v.train()

#Training Against Multiple corpuses
'''
    path
      ->corpus
        ->1.txt
        ->2.txt
        ->3.txt
'''
w2v = BN_Word2Vec(corpus_path="path/corpus")
w2v.train(epochs=25)


#Training Against a Dataframe Column
w2v = BN_Word2Vec(df= news_data['text_content'])
w2v.train(epochs=25)

After training is done the model "w2v_model" along with it's supportive vector files will be saved to current directory.

If you use any pretrained model, specify it while initializing BN_Word2Vec() . Otherwise no model_name is needed.

Get Word Vector

from BnFeatureExtraction import BN_Word2Vec 
w2v = BN_Word2Vec(model_name='give the model name here')
w2v.get_wordVector('আমার')

Get Similarity

from BnFeatureExtraction import BN_Word2Vec 
w2v = BN_Word2Vec(model_name='give the model name here')
w2v.get_similarity('ঢাকা', 'রাজধানী')

Output:

67.457879

Get n Similar Words

from BnFeatureExtraction import BN_Word2Vec 
w2v = BN_Word2Vec(model_name='give the model name here')
w2v.get_n_similarWord(['পদ্মা'], n=10)

Output:

[('সেতুর', 0.5857524275779724),
 ('মুলফৎগঞ্জ', 0.5773632526397705),
 ('মহানন্দা', 0.5634652376174927),
 ("'পদ্মা", 0.5617109537124634),
 ('গোমতী', 0.5605217218399048),
 ('পদ্মার', 0.5547558069229126),
 ('তুলসীগঙ্গা', 0.5274507999420166),
 ('নদীর', 0.5232067704200745),
 ('সেতু', 0.5225246548652649),
 ('সেতুতে', 0.5192927718162537)]

Get Middle Word

Get the probability distribution of the center word given words list.

from BnFeatureExtraction import BN_Word2Vec 
w2v = BN_Word2Vec(model_name='give the model name here')
w2v.get_outputWord(['ঢাকায়', 'মৃত্যু'], n=2)

Output:

[("হয়েছে।',", 0.05880642), ('শ্রমিকের', 0.05639163)]

Get Odd Words

Get the most unmatched word out from given words list

from BnFeatureExtraction import BN_Word2Vec 
w2v = BN_Word2Vec(model_name='give the model name here')
w2v.get_oddWords(['চাল', 'ডাল', 'চিনি', 'আকাশ'])

Output:

'আকাশ' 

Get Similarity Plot

Creates a barplot of similar words with their probability

from BnFeatureExtraction import BN_Word2Vec 
w2v = BN_Word2Vec(model_name='give the model name here')
w2v.get_similarity_plot('চাউল', 5)
  • FastText

    • Training
    • Get Word Vector
    • Get Similarity
    • Get n Similar Words
    • Get Middle Word
    • Get Odd Words

Training

from BnFeatureExtraction import BN_FastText
#Training Against Sentences
ft = ft = BN_FastText(sentences=[['আমার', 'প্রিয়', 'জন্মভূমি'], ['বাংলা', 'আমার', 'মাতৃভাষা'], ['বাংলা', 'আমার', 'মাতৃভাষা'], ['বাংলা', 'আমার', 'মাতৃভাষা'], ['বাংলা', 'আমার', 'মাতৃভাষা'] ])
ft.train()

#Training Against one Text Corpus
ft = BN_FastText(corpus_file="path to data or txt file")
ft.train()

#Training Against Multiple Corpuses
'''
    path
      ->Corpus
        ->1.txt
        ->2.txt
        ->3.txt
'''
ft = BN_FastText(corpus_path="path/Corpus")
ft.train(epochs=25)

#Training Against a Dataframe Column
ft = BN_FastText(df= news_data['text_content'])
ft.train(epochs=25)

After training is done the model "ft_model" along with it's supportive vector files will be saved to current directory.

If you don't want to train instead use a pretrained model, specify it while initializing BN_FastText() . Otherwise no model_name is needed.

Get Word Vector

from BnFeatureExtraction import BN_FastText 
ft = BN_FastText(model_name='give the model name here')
ft.get_wordVector('আমার')

Get Similarity

from BnFeatureExtraction import BN_FastText 
ft = BN_FastText(model_name='give the model name here')
ft.get_similarity('ঢাকা', 'রাজধানী')

Output:

70.56821120

Get n Similar Words

from BnFeatureExtraction import BN_FastText 
ft = BN_FastText(model_name='give the model name here')
ft.get_n_similarWord(['পদ্মা'], n=10)

Output:

[('পদ্মায়', 0.8103810548782349),
 ('পদ্মার', 0.794012725353241),
 ('পদ্মানদীর', 0.7747839689254761),
 ('পদ্মা-মেঘনার', 0.7573559284210205),
 ('পদ্মা.', 0.7470568418502808),
 ('‘পদ্মা', 0.7413997650146484),
 ('পদ্মাসেতুর', 0.716225266456604),
 ('পদ্ম', 0.7154797315597534),
 ('পদ্মহেম', 0.6881639361381531),
 ('পদ্মাবত', 0.6682782173156738)]

Get Odd Words

Get the most unmatched word out from given words list

from BnFeatureExtraction import BN_FastText 
ft = BN_FastText(model_name='give the model name here')
ft.get_oddWords(['চাল', 'ডাল', 'চিনি', 'আকাশ'])

Output:

'আকাশ' 

Get Similarity Plot

Creates a barplot of similar words with their probability

from BnFeatureExtraction import BN_FastText 
ft = BN_FastText(model_name='give the model name here')
ft.get_similarity_plot('চাউল', 5)
  • GloVe

    • Training
    • Get n Similar Words

Training

from BnFeatureExtraction import BN_GloVe
#Training Against Sentences
glv = BN_GloVe(sentences=[['আমার', 'প্রিয়', 'জন্মভূমি'], ['বাংলা', 'আমার', 'মাতৃভাষা'], ['বাংলা', 'আমার', 'মাতৃভাষা'], ['বাংলা', 'আমার', 'মাতৃভাষা'], ['বাংলা', 'আমার', 'মাতৃভাষা'] ])
glv.train()

#Training Against one Text Corpus
glv = BN_GloVe(corpus_file="path_to_corpus.txt")
glv.train()

#Training Against Multiple Corpuses
'''
    path
      ->Corpus
        ->1.txt
        ->2.txt
        ->3.txt
'''
glv = BN_GloVe(corpus_path="path/corpus")
glv.train(epochs=25)

#Training Against a Dataframe Column
glv = BN_GloVe(df= news_data['text_content'])
glv.train(epochs=25)

After training is done the model "glove_model" along with it's supportive vector files will be saved to current directory.

If you don't want to train instead use a pretrained model, specify it while initializing BN_FastText() . Otherwise no model_name is needed.

Get n Similar Words

from BnFeatureExtraction import BN_GloVe 
glv = BN_GloVe(model_name='give the model name here')
glv.get_n_similarWord(['পদ্মা'], n=10)

Output:

[('পদ্মায়', 0.8103810548782349),
 ('পদ্মার', 0.794012725353241),
 ('পদ্মানদীর', 0.7747839689254761),
 ('পদ্মা-মেঘনার', 0.7573559284210205),
 ('পদ্মা.', 0.7470568418502808),
 ('‘পদ্মা', 0.7413997650146484),
 ('পদ্মাসেতুর', 0.716225266456604),
 ('পদ্ম', 0.7154797315597534),
 ('পদ্মহেম', 0.6881639361381531),
 ('পদ্মাবত', 0.6682782173156738)]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

BnFeatureExtraction-0.3-py3-none-any.whl (168.0 kB view details)

Uploaded Python 3

File details

Details for the file BnFeatureExtraction-0.3-py3-none-any.whl.

File metadata

  • Download URL: BnFeatureExtraction-0.3-py3-none-any.whl
  • Upload date:
  • Size: 168.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.23.0 setuptools/42.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.5

File hashes

Hashes for BnFeatureExtraction-0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 67bcae21609a3e3aa8e02e3256f420fc4b6dd5c1ec8e7c7bcbdc8cd5bfee67c7
MD5 c636153cfeaa9298bcbd2e797e1095fb
BLAKE2b-256 3190b581cd19461380402148e351fbb82f9d1808104990372fa6d1de19a9d7ff

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page