BNLP is a natural language processing toolkit for Bengali Language
Project description
Bengali Natural Language Processing(BNLP)
BNLP is a natural language processing toolkit for Bengali Language. This tool will help you to tokenize Bengali text, Embedding Bengali words, Bengali POS Tagging, Construct Neural Model for Bengali NLP purposes.
NB: Any Researcher who refer this tool in his/her paper please let us know, we will include paper link here
Contents
- Current Features
- Installation
- Pretrained Model
- Tokenization
- Embedding
- POS Tagging
- NER
- Issue
- Contributor Guide
- Contributor List
- Documentation
- Notebook
Current Features
-
- SentencePiece Tokenizer
- Basic Tokenizer
- NLTK Tokenizer
-
- Bengali Word2Vec
- Bengali Fasttext
- Bengali GloVe
Installation
PIP installer(python 3.5, 3.6, 3.7 tested okay)
pip install bnlp_toolkit
Local Installer
$git clone https://github.com/sagorbrur/bnlp.git
$cd bnlp
$python setup.py install
Pretrained Model
Download Link
- Bengali SentencePiece
- Bengali Word2Vec
- Bengali FastText
- Bengali GloVe Wordvectors
- Bengali POS Tag model
- Bengali NER model
Training Details
- Sentencepiece, Word2Vec, Fasttext, GloVe model trained with Bengali Wikipedia Dump Dataset
- SentencePiece Training Vocab Size=50000
- Fasttext trained with total words = 20M, vocab size = 1171011, epoch=50, embedding dimension = 300 and the training loss = 0.318668,
- Word2Vec word embedding dimension = 300
- To Know Bengali GloVe Wordvector and training process follow this repository
- Bengali CRF POS Tagging was training with nltr dataset with 80% accuracy.
- Bengali CRF NER Tagging was train with this data with 90% accuracy.
Tokenization
-
Bengali SentencePiece Tokenization
- tokenization using trained model
from bnlp.sentencepiece_tokenizer import SP_Tokenizer bsp = SP_Tokenizer() model_path = "./model/bn_spm.model" input_text = "আমি ভাত খাই। সে বাজারে যায়।" tokens = bsp.tokenize(model_path, input_text) print(tokens) text2id = bsp.text2id(model_path, input_text) print(text2id) id2text = bsp.id2text(model_path, text2id) print(id2text)
- Training SentencePiece
from bnlp.sentencepiece_tokenizer import SP_Tokenizer bsp = SP_Tokenizer() data = "test.txt" model_prefix = "test" vocab_size = 5 bsp.train_bsp(data, model_prefix, vocab_size)
- tokenization using trained model
-
Basic Tokenizer
from bnlp.basic_tokenizer import BasicTokenizer basic_t = BasicTokenizer() raw_text = "আমি বাংলায় গান গাই।" tokens = basic_t.tokenize(raw_text) print(tokens) # output: ["আমি", "বাংলায়", "গান", "গাই", "।"]
-
NLTK Tokenization
from bnlp.nltk_tokenizer import NLTK_Tokenizer text = "আমি ভাত খাই। সে বাজারে যায়। তিনি কি সত্যিই ভালো মানুষ?" bnltk = NLTK_Tokenizer() word_tokens = bnltk.word_tokenize(text) sentence_tokens = bnltk.sentence_tokenize(text) print(word_tokens) print(sentence_tokens) # output # word_token: ["আমি", "ভাত", "খাই", "।", "সে", "বাজারে", "যায়", "।", "তিনি", "কি", "সত্যিই", "ভালো", "মানুষ", "?"] # sentence_token: ["আমি ভাত খাই।", "সে বাজারে যায়।", "তিনি কি সত্যিই ভালো মানুষ?"]
Word Embedding
-
Bengali Word2Vec
-
Generate Vector using pretrain model
from bnlp.bengali_word2vec import Bengali_Word2Vec bwv = Bengali_Word2Vec() model_path = "model/bengali_word2vec.model" word = 'আমার' vector = bwv.generate_word_vector(model_path, word) print(vector.shape) print(vector)
-
Find Most Similar Word Using Pretrained Model
from bnlp.bengali_word2vec import Bengali_Word2Vec bwv = Bengali_Word2Vec() model_path = "model/bengali_word2vec.model" word = 'আমার' similar = bwv.most_similar(model_path, word) print(similar)
-
Train Bengali Word2Vec with your own data
from bnlp.bengali_word2vec import Bengali_Word2Vec bwv = Bengali_Word2Vec(True) data_file = "test.txt" model_name = "test_model.model" vector_name = "test_vector.vector" bwv.train_word2vec(data_file, model_name, vector_name)
-
-
Bengali FastText
-
Generate Vector Using Pretrained Model
from bnlp.bengali_fasttext import Bengali_Fasttext bft = Bengali_Fasttext() word = "গ্রাম" model_path = "model/bengali_fasttext.bin" word_vector = bft.generate_word_vector(model_path, word) print(word_vector.shape) print(word_vector)
-
Train Bengali FastText Model
from bnlp.bengali_fasttext import Bengali_Fasttext bft = Bengali_Fasttext() data = "data.txt" model_name = "saved_model.bin" epoch = 50 bft.train_fasttext(data, model_name, epoch)
-
-
Bengali GloVe Word Vectors
We trained glove model with bengali data(wiki+news articles) and published bengali glove word vectors
You can download and use it on your different machine learning purposes.from bnlp.glove_wordvector import BN_Glove glove_path = "bn_glove.39M.100d.txt" word = "গ্রাম" bng = BN_Glove() res = bng.closest_word(glove_path, word) print(res) vec = bng.word2vec(glove_path, word) print(vec)
Bengali POS Tagging
-
Bengali CRF POS Tagging
-
Find Pos Tag Using Pretrained Model
from bnlp.pos import POS bn_pos = POS() model_path = "model/bn_pos.pkl" text = "আমি ভাত খাই।" res = bn_pos.tag(model_path, text) print(res) # [('আমি', 'PPR'), ('ভাত', 'NC'), ('খাই', 'VM'), ('।', 'PU')]
-
Train POS Tag Model
from bnlp.pos import POS bn_pos = POS() model_name = "pos_model.pkl" tagged_sentences = [[('রপ্তানি', 'JJ'), ('দ্রব্য', 'NC'), ('-', 'PU'), ('তাজা', 'JJ'), ('ও', 'CCD'), ('শুকনা', 'JJ'), ('ফল', 'NC'), (',', 'PU'), ('আফিম', 'NC'), (',', 'PU'), ('পশুচর্ম', 'NC'), ('ও', 'CCD'), ('পশম', 'NC'), ('এবং', 'CCD'),('কার্পেট', 'NC'), ('৷', 'PU')], [('মাটি', 'NC'), ('থেকে', 'PP'), ('বড়জোর', 'JQ'), ('চার', 'JQ'), ('পাঁচ', 'JQ'), ('ফুট', 'CCL'), ('উঁচু', 'JJ'), ('হবে', 'VM'), ('৷', 'PU')]] bn_pos.train(model_name, tagged_sentences)
-
Bengali NER
-
Bengali CRF NER
-
Find NER Tag Using Pretrained Model
from bnlp.ner import NER bn_ner = NER() model_path = "model/bn_ner.pkl" text = "সে ঢাকায় থাকে।" result = bn_ner.tag(model_path, text) print(result) # [('সে', 'O'), ('ঢাকায়', 'S-LOC'), ('থাকে', 'O')]
-
Train NER Tag Model
from bnlp.ner import NER bn_ner = NER() model_name = "ner_model.pkl" tagged_sentences = [[('ত্রাণ', 'O'),('ও', 'O'),('সমাজকল্যাণ', 'O'),('সম্পাদক', 'S-PER'),('সুজিত', 'B-PER'),('রায়', 'I-PER'),('নন্দী', 'E-PER'),('প্রমুখ', 'O'),('সংবাদ', 'O'),('সম্মেলনে', 'O'),('উপস্থিত', 'O'),('ছিলেন', 'O')], [('ত্রাণ', 'O'),('ও', 'O'),('সমাজকল্যাণ', 'O'),('সম্পাদক', 'S-PER'),('সুজিত', 'B-PER'),('রায়', 'I-PER'),('নন্দী', 'E-PER'),('প্রমুখ', 'O'),('সংবাদ', 'O'),('সম্মেলনে', 'O'),('উপস্থিত', 'O'),('ছিলেন', 'O')], [('ত্রাণ', 'O'),('ও', 'O'),('সমাজকল্যাণ', 'O'),('সম্পাদক', 'S-PER'),('সুজিত', 'B-PER'),('রায়', 'I-PER'),('নন্দী', 'E-PER'),('প্রমুখ', 'O'),('সংবাদ', 'O'),('সম্মেলনে', 'O'),('উপস্থিত', 'O'),('ছিলেন', 'O')]] bn_per.train(model_name, tagged_sentences)
-
Issue
- if
ModuleNotFoundError: No module named 'fasttext'
problem arise please do the next line
pip install fasttext
- if
nltk
issue arise please do the following line before importingbnlp
import nltk
nltk.download("punkt")
Contributor Guide
Check CONTRIBUTING.md page for details.
Thanks To
Contributor List
Extra Contributor
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file bnlp_toolkit-2.3.tar.gz
.
File metadata
- Download URL: bnlp_toolkit-2.3.tar.gz
- Upload date:
- Size: 1.0 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ba2fbd8546a23b1b5c09d8b34cbb830d99273e924870f58d37feb4ea87cdcf8b |
|
MD5 | e85470592f1a5b2518afc0cdb689845b |
|
BLAKE2b-256 | 227d7cf63dd2526b0f12bea4211cf83814030b87a705115fef3e37f47c08b066 |
File details
Details for the file bnlp_toolkit-2.3-py3-none-any.whl
.
File metadata
- Download URL: bnlp_toolkit-2.3-py3-none-any.whl
- Upload date:
- Size: 12.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c261d41e5a801cb3116e1c07fc16d2bb9d138e904f71d5a815088e6828442f97 |
|
MD5 | 8326f8f0bc275b811f59ca14316b8c81 |
|
BLAKE2b-256 | dec9376837d2bf998a511af113c82feeee703ff95f41eb3ba79ac43036f0edfd |