Bangla Unicode Normalization Toolkit
Project description
bnUnicodeNormalizer
Bangla Unicode Normalization for word normalization
install
pip install bnunicodenormalizer
useage
initialization and cleaning
# import
from bnunicodenormalizer import Normalizer
from pprint import pprint
# initialize
bnorm=Normalizer()
# normalize
word = 'াটোবাকো'
result=bnorm(word)
print(f"Non-norm:{word}; Norm:{result['normalized']}")
print("--------------------------------------------------")
pprint(result)
output
Non-norm:াটোবাকো; Norm:টোবাকো
--------------------------------------------------
{'given': 'াটোবাকো',
'normalized': 'টোবাকো',
'ops': [{'after': 'টোবাকো',
'before': 'াটোবাকো',
'operation': 'InvalidUnicode'}]}
call to the normalizer returns a dictionary in the following format
given
= provided textnormalized
= normalized text (gives None if during the operation length of the text becomes 0)ops
= list of operations (dictionary) that were executed in given text to create normalized text- each dictionary in ops has:
operation
: the name of the operation / problem in given textbefore
: what the text looked like before the specific operationafter
: what the text looks like after the specific operation
allow to use english text
# initialize without english (default)
norm=Normalizer()
print("without english:",norm("ASD123")["normalized"])
# --> returns None
norm=Normalizer(allow_english=True)
print("with english:",norm("ASD123")["normalized"])
output
without english: None
with english: ASD123
Initialization: Bangla Normalizer
'''
initialize a normalizer
args:
allow_english : allow english letters numbers and punctuations [default:False]
keep_legacy_symbols : legacy symbols will be considered as valid unicodes[default:False]
'৺':Isshar
'৻':Ganda
'ঀ':Anji (not '৭')
'ঌ':li
'ৡ':dirgho li
'ঽ':Avagraha
'ৠ':Vocalic Rr (not 'ঋ')
'৲':rupi
'৴':currency numerator 1
'৵':currency numerator 2
'৶':currency numerator 3
'৷':currency numerator 4
'৸':currency numerator one less than the denominator
'৹':Currency Denominator Sixteen
legacy_maps : a dictionay for changing legacy symbols into a more used unicode
a default legacy map is included in the language class as well,
legacy_maps={'ঀ':'৭',
'ঌ':'৯',
'ৡ':'৯',
'৵':'৯',
'৻':'ৎ',
'ৠ':'ঋ',
'ঽ':'ই'}
pass-
* legacy_maps=None; for keeping the legacy symbols as they are
* legacy_maps="default"; for using the default legacy map
* legacy_maps=custom dictionary(type-dict) ; which will map your desired legacy symbol to any of symbol you want
* the keys in the custiom dicts must belong to any of the legacy symbols
* the values in the custiom dicts must belong to either vowels,consonants,numbers or diacritics
vowels = ['অ', 'আ', 'ই', 'ঈ', 'উ', 'ঊ', 'ঋ', 'এ', 'ঐ', 'ও', 'ঔ']
consonants = ['ক', 'খ', 'গ', 'ঘ', 'ঙ', 'চ', 'ছ','জ', 'ঝ', 'ঞ',
'ট', 'ঠ', 'ড', 'ঢ', 'ণ', 'ত', 'থ', 'দ', 'ধ', 'ন',
'প', 'ফ', 'ব', 'ভ', 'ম', 'য', 'র', 'ল', 'শ', 'ষ',
'স', 'হ','ড়', 'ঢ়', 'য়','ৎ']
numbers = ['০', '১', '২', '৩', '৪', '৫', '৬', '৭', '৮', '৯']
vowel_diacritics = ['া', 'ি', 'ী', 'ু', 'ূ', 'ৃ', 'ে', 'ৈ', 'ো', 'ৌ']
consonant_diacritics = ['ঁ', 'ং', 'ঃ']
> for example you may want to map 'ঽ':Avagraha as 'হ' based on visual similiarity
(default:'ই')
** legacy contions: keep_legacy_symbols and legacy_maps operates as follows
case-1) keep_legacy_symbols=True and legacy_maps=None
: all legacy symbols will be considered valid unicodes. None of them will be changed
case-2) keep_legacy_symbols=True and legacy_maps=valid dictionary example:{'ঀ':'ক'}
: all legacy symbols will be considered valid unicodes. Only 'ঀ' will be changed to 'ক' , others will be untouched
case-3) keep_legacy_symbols=False and legacy_maps=None
: all legacy symbols will be removed
case-4) keep_legacy_symbols=False and legacy_maps=valid dictionary example:{'ঽ':'ই','ৠ':'ঋ'}
: 'ঽ' will be changed to 'ই' and 'ৠ' will be changed to 'ঋ'. All other legacy symbols will be removed
'''
my_legacy_maps={'ঌ':'ই',
'ৡ':'ই',
'৵':'ই',
'ৠ':'ই',
'ঽ':'ই'}
text="৺,৻,ঀ,ঌ,ৡ,ঽ,ৠ,৲,৴,৵,৶,৷,৸,৹"
# case 1
norm=Normalizer(keep_legacy_symbols=True,legacy_maps=None)
print("case-1 normalized text: ",norm(text)["normalized"])
# case 2
norm=Normalizer(keep_legacy_symbols=True,legacy_maps=my_legacy_maps)
print("case-2 normalized text: ",norm(text)["normalized"])
# case 2-defalut
norm=Normalizer(keep_legacy_symbols=True)
print("case-2 default normalized text: ",norm(text)["normalized"])
# case 3
norm=Normalizer(keep_legacy_symbols=False,legacy_maps=None)
print("case-3 normalized text: ",norm(text)["normalized"])
# case 4
norm=Normalizer(keep_legacy_symbols=False,legacy_maps=my_legacy_maps)
print("case-4 normalized text: ",norm(text)["normalized"])
# case 4-defalut
norm=Normalizer(keep_legacy_symbols=False)
print("case-4 default normalized text: ",norm(text)["normalized"])
output
case-1 normalized text: ৺,৻,ঀ,ঌ,ৡ,ঽ,ৠ,৲,৴,৵,৶,৷,৸,৹
case-2 normalized text: ৺,৻,ঀ,ই,ই,ই,ই,৲,৴,ই,৶,৷,৸,৹
case-2 default normalized text: ৺,৻,ঀ,ঌ,ৡ,ঽ,ৠ,৲,৴,৵,৶,৷,৸,৹
case-3 normalized text: ,,,,,,,,,,,,,
case-4 normalized text: ,,,ই,ই,ই,ই,,,ই,,,,
case-4 default normalized text: ,,,,,,,,,,,,,
Operations
- base operations available for all indic languages:
self.word_level_ops={"LegacySymbols" :self.mapLegacySymbols,
"BrokenDiacritics" :self.fixBrokenDiacritics}
self.decomp_level_ops={"BrokenNukta" :self.fixBrokenNukta,
"InvalidUnicode" :self.cleanInvalidUnicodes,
"InvalidConnector" :self.cleanInvalidConnector,
"FixDiacritics" :self.cleanDiacritics,
"VowelDiacriticAfterVowel" :self.cleanVowelDiacriticComingAfterVowel}
- extensions for bangla
self.decomp_level_ops["ToAndHosontoNormalize"] = self.normalizeToandHosonto
# invalid folas
self.decomp_level_ops["NormalizeConjunctsDiacritics"] = self.cleanInvalidConjunctDiacritics
# complex root cleanup
self.decomp_level_ops["ComplexRootNormalization"] = self.convertComplexRoots
Normalization Problem Examples
In all examples (a) is the non-normalized form and (b) is the normalized form
- Broken diacritics:
# Example-1:
(a)'আরো'==(b)'আরো' -> False
(a) breaks as:['আ', 'র', 'ে', 'া']
(b) breaks as:['আ', 'র', 'ো']
# Example-2:
(a)পৌঁছে==(b)পৌঁছে -> False
(a) breaks as:['প', 'ে', 'ৗ', 'ঁ', 'ছ', 'ে']
(b) breaks as:['প', 'ৌ', 'ঁ', 'ছ', 'ে']
# Example-3:
(a)সংস্কৄতি==(b)সংস্কৃতি -> False
(a) breaks as:['স', 'ং', 'স', '্', 'ক', 'ৄ', 'ত', 'ি']
(b) breaks as:['স', 'ং', 'স', '্', 'ক', 'ৃ', 'ত', 'ি']
- Nukta Normalization:
Example-1:
(a)কেন্দ্রীয়==(b)কেন্দ্রীয় -> False
(a) breaks as:['ক', 'ে', 'ন', '্', 'দ', '্', 'র', 'ী', 'য', '়']
(b) breaks as:['ক', 'ে', 'ন', '্', 'দ', '্', 'র', 'ী', 'য়']
Example-2:
(a)রযে়ছে==(b)রয়েছে -> False
(a) breaks as:['র', 'য', 'ে', '়', 'ছ', 'ে']
(b) breaks as:['র', 'য়', 'ে', 'ছ', 'ে']
Example-3:
(a)জ়ন্য==(b)জন্য -> False
(a) breaks as:['জ', '়', 'ন', '্', 'য']
(b) breaks as:['জ', 'ন', '্', 'য']
- Invalid hosonto
# Example-1:
(a)দুই্টি==(b)দুইটি-->False
(a) breaks as ['দ', 'ু', 'ই', '্', 'ট', 'ি']
(b) breaks as ['দ', 'ু', 'ই', 'ট', 'ি']
# Example-2:
(a)এ্তে==(b)এতে-->False
(a) breaks as ['এ', '্', 'ত', 'ে']
(b) breaks as ['এ', 'ত', 'ে']
# Example-3:
(a)নেট্ওয়ার্ক==(b)নেটওয়ার্ক-->False
(a) breaks as ['ন', 'ে', 'ট', '্', 'ও', 'য়', 'া', 'র', '্', 'ক']
(b) breaks as ['ন', 'ে', 'ট', 'ও', 'য়', 'া', 'র', '্', 'ক']
# Example-4:
(a)এস্আই==(b)এসআই-->False
(a) breaks as ['এ', 'স', '্', 'আ', 'ই']
(b) breaks as ['এ', 'স', 'আ', 'ই']
# Example-5:
(a)'চু্ক্তি'==(b)'চুক্তি' -> False
(a) breaks as:['চ', 'ু', '্', 'ক', '্', 'ত', 'ি']
(b) breaks as:['চ', 'ু','ক', '্', 'ত', 'ি']
# Example-6:
(a)'যু্ক্ত'==(b)'যুক্ত' -> False
(a) breaks as:['য', 'ু', '্', 'ক', '্', 'ত']
(b) breaks as:['য', 'ু', 'ক', '্', 'ত']
# Example-7:
(a)'কিছু্ই'==(b)'কিছুই' -> False
(a) breaks as:['ক', 'ি', 'ছ', 'ু', '্', 'ই']
(b) breaks as:['ক', 'ি', 'ছ', 'ু','ই']
- To+hosonto:
# Example-1:
(a)বুত্পত্তি==(b)বুৎপত্তি-->False
(a) breaks as ['ব', 'ু', 'ত', '্', 'প', 'ত', '্', 'ত', 'ি']
(b) breaks as ['ব', 'ু', 'ৎ', 'প', 'ত', '্', 'ত', 'ি']
# Example-2:
(a)উত্স==(b)উৎস-->False
(a) breaks as ['উ', 'ত', '্', 'স']
(b) breaks as ['উ', 'ৎ', 'স']
- Unwanted doubles(consecutive doubles):
# Example-1:
(a)'যুুদ্ধ'==(b)'যুদ্ধ' -> False
(a) breaks as:['য', 'ু', 'ু', 'দ', '্', 'ধ']
(b) breaks as:['য', 'ু', 'দ', '্', 'ধ']
# Example-2:
(a)'দুুই'==(b)'দুই' -> False
(a) breaks as:['দ', 'ু', 'ু', 'ই']
(b) breaks as:['দ', 'ু', 'ই']
# Example-3:
(a)'প্রকৃৃতির'==(b)'প্রকৃতির' -> False
(a) breaks as:['প', '্', 'র', 'ক', 'ৃ', 'ৃ', 'ত', 'ি', 'র']
(b) breaks as:['প', '্', 'র', 'ক', 'ৃ', 'ত', 'ি', 'র']
# Example-4:
(a)আমাকোা==(b)'আমাকো'-> False
(a) breaks as:['আ', 'ম', 'া', 'ক', 'ে', 'া', 'া']
(b) breaks as:['আ', 'ম', 'া', 'ক', 'ো']
- Vowwels and modifier followed by vowel diacritics:
# Example-1:
(a)উুলু==(b)উলু-->False
(a) breaks as ['উ', 'ু', 'ল', 'ু']
(b) breaks as ['উ', 'ল', 'ু']
# Example-2:
(a)আর্কিওোলজি==(b)আর্কিওলজি-->False
(a) breaks as ['আ', 'র', '্', 'ক', 'ি', 'ও', 'ো', 'ল', 'জ', 'ি']
(b) breaks as ['আ', 'র', '্', 'ক', 'ি', 'ও', 'ল', 'জ', 'ি']
# Example-3:
(a)একএে==(b)একত্রে-->False
(a) breaks as ['এ', 'ক', 'এ', 'ে']
(b) breaks as ['এ', 'ক', 'ত', '্', 'র', 'ে']
- Repeated folas:
# Example-1:
(a)গ্র্রামকে==(b)গ্রামকে-->False
(a) breaks as ['গ', '্', 'র', '্', 'র', 'া', 'ম', 'ক', 'ে']
(b) breaks as ['গ', '্', 'র', 'া', 'ম', 'ক', 'ে']
IMPORTANT NOTE
The normalization is purely based on how bangla text is used in Bangladesh
(bn:bd). It does not necesserily cover every variation of textual content available at other regions
unit testing
- clone the repository
- change working directory to
tests
- run:
python3 -m unittest test_normalizer.py
Issue Reporting
-
for reporting an issue please provide the specific information
- invalid text
- expected valid text
- why is the output expected
- clone the repository
- add a test case in tests/test_normalizer.py after line no:91
# Dummy Non-Bangla,Numbers and Space cases/ Invalid start end cases # english self.assertEqual(norm('ASD1234')["normalized"],None) self.assertEqual(ennorm('ASD1234')["normalized"],'ASD1234') # random self.assertEqual(norm('িত')["normalized"],'ত') self.assertEqual(norm('সং্যুক্তি')["normalized"],"সংযুক্তি") # Ending self.assertEqual(norm("অজানা্")["normalized"],"অজানা") #--------------------------------------------- insert your assertions here---------------------------------------- ''' ### case: give a comment about your case ## (a) invalid text==(b) valid text <---- an example of your case self.assertEqual(norm(invalid text)["normalized"],expected output) or self.assertEqual(ennorm(invalid text)["normalized"],expected output) <----- for including english text ''' # your case goes here-
- perform the unit testing
- make sure the unit test fails under true conditions
Indic Base Normalizer
- to use indic language normalizer for 'devanagari', 'gujarati', 'odiya', 'tamil', 'panjabi', 'malayalam','sylhetinagri'
from bnunicodenormalizer import IndicNormalizer
norm=IndicNormalizer('devanagari')
- initialization
'''
initialize a normalizer
args:
language : language identifier from 'devanagari', 'gujarati', 'odiya', 'tamil', 'panjabi', 'malayalam','sylhetinagri'
allow_english : allow english letters numbers and punctuations [default:False]
'''
ABOUT US
- Authors: Bengali.AI in association with OCR Team , APSIS Solutions Limited
- Cite Our Work
@inproceedings{ansary-etal-2024-unicode-normalization,
title = "{U}nicode Normalization and Grapheme Parsing of {I}ndic Languages",
author = "Ansary, Nazmuddoha and
Adib, Quazi Adibur Rahman and
Reasat, Tahsin and
Sushmit, Asif Shahriyar and
Humayun, Ahmed Imtiaz and
Mehnaz, Sazia and
Fatema, Kanij and
Rashid, Mohammad Mamun Or and
Sadeque, Farig",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.1479",
pages = "17019--17030",
abstract = "Writing systems of Indic languages have orthographic syllables, also known as complex graphemes, as unique horizontal units. A prominent feature of these languages is these complex grapheme units that comprise consonants/consonant conjuncts, vowel diacritics, and consonant diacritics, which, together make a unique Language. Unicode-based writing schemes of these languages often disregard this feature of these languages and encode words as linear sequences of Unicode characters using an intricate scheme of connector characters and font interpreters. Due to this way of using a few dozen Unicode glyphs to write thousands of different unique glyphs (complex graphemes), there are serious ambiguities that lead to malformed words. In this paper, we are proposing two libraries: i) a normalizer for normalizing inconsistencies caused by a Unicode-based encoding scheme for Indic languages and ii) a grapheme parser for Abugida text. It deconstructs words into visually distinct orthographic syllables or complex graphemes and their constituents. Our proposed normalizer is a more efficient and effective tool than the previously used IndicNLP normalizer. Moreover, our parser and normalizer are also suitable tools for general Abugida text processing as they performed well in our robust word-based and NLP experiments. We report the pipeline for the scripts of 7 languages in this work and develop the framework for the integration of more scripts.",
}
Change Log
0.0.5 (9/03/2022)
- added details for execution map
- checkop typo correction
0.0.6 (9/03/2022)
- broken diacritics op addition
0.0.7 (11/03/2022)
- assemese replacement
- word op and unicode op mapping
- modifier list modification
- doc string for call and initialization
- verbosity removal
- typo correction for operation
- unit test updates
- 'এ' replacement correction
- NonGylphUnicodes
- Legacy symbols option
- legacy mapper added
- added bn:bd declaration
0.0.8 (14/03/2022)
- MultipleConsonantDiacritics handling change
- to+hosonto correction
- invalid hosonto correction
0.0.9 (15/04/2022)
- base normalizer
- language class
- bangla extension
- complex root normalization
0.0.10 (15/04/2022)
- added conjucts
- exception for english words
0.0.11 (15/04/2022)
- fixed no space char issue for bangla
0.0.12 (26/04/2022)
- fixed consonants orders
0.0.13 (26/04/2022)
- fixed non char followed by diacritics
0.0.14 (01/05/2022)
- word based normalization
- encoding fix
0.0.15 (02/05/2022)
- import correction
0.0.16 (02/05/2022)
- local variable issue
0.0.17 (17/05/2022)
- nukta mod break
0.0.18 (08/06/2022)
- no space chars fix
0.0.19 (15/06/2022)
- no space chars further fix
- base_bangla_compose to avoid false op flags
- added foreign conjuncts
0.0.20 (01/08/2022)
- এ্যা replacement correction
0.0.21 (01/08/2022)
- "য","ব" + hosonto combination correction
- added 'ব্ল্য' in conjuncts
0.0.22 (22/08/2022)
- \u200d combination limiting
0.0.23 (23/08/2022)
- \u200d condition change
0.0.24 (26/08/2022)
- \u200d error handling
0.0.25 (10/09/22)
- removed unnecessary operations: fixRefOrder,fixOrdersForCC
- added conjuncts: 'র্ন্ত','ঠ্য','ভ্ল'
0.1.0 (20/10/22)
- added indic parser
- fixed language class
0.1.1 (21/10/22)
- added nukta and diacritic maps for indics
- cleaned conjucts for now
- fixed issues with no-space and connector
0.1.2 (10/12/22)
- allow halant ending for indic language except bangla
0.1.3 (10/12/22)
- broken char break cases for halant
0.1.4 (01/01/23)
- added sylhetinagri
0.1.5 (01/01/23)
- cleaned panjabi double quotes in diac map
0.1.6 (15/04/23)
- added bangla punctuations
0.1.7 (26/05/24)
- added proper bibtex
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file bnunicodenormalizer-0.1.7.tar.gz
.
File metadata
- Download URL: bnunicodenormalizer-0.1.7.tar.gz
- Upload date:
- Size: 28.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 86a3489cc81c73d2afb4e265bd2d0d8bc52fc8a2374e210c899e0260940bc091 |
|
MD5 | c4206b35f7d566244212e2c713ff3adb |
|
BLAKE2b-256 | 35b4b93d9cd7dc3906eaceafc340cb9e834f9f54fac84d51e00045bd6cb9d3e6 |
File details
Details for the file bnunicodenormalizer-0.1.7-py3-none-any.whl
.
File metadata
- Download URL: bnunicodenormalizer-0.1.7-py3-none-any.whl
- Upload date:
- Size: 23.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 42b6a9720bca52c02a944a0876770e86694eb081a096f3c644ccd8add40f7cee |
|
MD5 | 7f06bbc8710d592075343ad01dcf348d |
|
BLAKE2b-256 | e937df46a2375c462623ebf17258926cacb94e01a6159c93f9144a6b42bc33fe |