UVAD Database Access in Bob
Project description
UVAD Database Access in Bob
This package is part of the signal-processing and machine learning toolbox Bob. This package provides an interface to the Unicamp Video-Attack Database (UVAD) database. The original data files need to be downloaded separately.
If you use this database, please cite the following publication:
@ARTICLE{7017526, author={Pinto, A. and Robson Schwartz, W. and Pedrini, H. and De Rezende Rocha, A.}, journal={Information Forensics and Security, IEEE Transactions on}, title={Using Visual Rhythms for Detecting Video-Based Facial Spoof Attacks}, year={2015}, month={May}, volume={10}, number={5}, pages={1025-1038}, keywords={Authentication;Biometrics (access control);Databases;Face;Feature extraction;Histograms;Noise;Unicamp Video-Attack Database;Video-based Face Spoofing;Video-based face spoofing;Visual Rhythm, Video-based Attacks;impersonation detection in facial biometric systems;unicamp video-attack database;video-based attacks;visual rhythm}, doi={10.1109/TIFS.2015.2395139}, ISSN={1556-6013},}
Installation
Complete Bob’s installation instructions. Then, to install this package, run:
$ conda install bob.db.uvad
Contact
For questions or reporting issues to this software package, contact our development mailing list.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
bob.db.uvad-0.0.6.zip
(309.0 kB
view details)
File details
Details for the file bob.db.uvad-0.0.6.zip
.
File metadata
- Download URL: bob.db.uvad-0.0.6.zip
- Upload date:
- Size: 309.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0.post20200925 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.7.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1cf88380e150cbdb31f792656f88409b75a9b79162e1e06d2e36173866d36e69 |
|
MD5 | 9ae76b4a1111c4c880caf8542200aea4 |
|
BLAKE2b-256 | 8e07ae55cc3f9ac0fdac2b163327139ccb2d6fe60c75dcdd17a1d9df05e4445f |