Skip to main content

Software package to reproduce Evaluation Methodologies for Biometric Presentation Attack Detection chapter of Handbook of Biometric Anti-Spoofing: Presentation Attack Detection 2nd Edition

Project description

This package is part of the signal-processing and machine learning toolbox Bob. It is a software package to reproduce “Evaluation Methodologies for Biometric Presentation Attack Detection” chapter of “Handbook of Biometric Anti- Spoofing: Presentation Attack Detection 2nd Edition”:

@INCOLLECTION{Chingovska_SPRINGER_2019,
         author = {Chingovska, Ivana and Mohammadi, Amir and Anjos, Andr{\'{e}} and Marcel, S{\'{e}}bastien},
         editor = {Marcel, S{\'{e}}bastien and Nixon, Mark and Fierrez, Julian and Evans, Nicholas},
          title = {Evaluation Methodologies for Biometric Presentation Attack Detection},
      booktitle = {Handbook of Biometric Anti-Spoofing},
        edition = {2nd},
        chapter = {20},
           year = {2019},
      publisher = {Springer International Publishing},
           isbn = {978-3-319-92627-8},
            url = {https://www.springer.com/us/book/9783319926261},
            doi = {10.1007/978-3-319-92627-8},
       crossref = {Chingovska_Idiap-Internal-RR-30-2018},
            pdf = {https://publidiap.idiap.ch/downloads//papers/2018/Chingovska_SPRINGER_2019.pdf}
}

Reproduction

The installation instructions are based on conda and works on Linux and MacOS systems only. Install conda before continuing.

Once you have installed conda, create a conda environment with the following command and activate it:

$ conda create --name bob.hobpad2.chapter20 --override-channels \
  -c https://www.idiap.ch/software/bob/conda -c defaults \
  bob.hobpad2.chapter20
$ conda activate bob.hobpad2.chapter20

This will install all the required software to reproduce this book chapter. Once installed, follow the commands below to generate the plots:

$ # To generate Figure 4:
$ bob measure gen generic_scores
$ bob measure hist generic_scores/scores-dev -o fig4.a.pdf
$ bob measure det generic_scores/scores-dev -o fig4.b.pdf --lines-at ' ' --no-disp-legend --titles ' '
$ bob measure epc generic_scores/scores-{dev,eval} -o fig4.c.pdf --titles ' ' --no-disp-legend -xl '$\beta$'
$ # To generate Figure 5:
$ bob vulnerability gen vuln_scores
$ bob vulnerability hist vuln_scores/{licit,spoof}/scores-dev -o fig5.a.pdf --no-iapmr-line
$ bob vulnerability hist vuln_scores/{licit,spoof}/scores-dev -o fig5.b.pdf --no-real-data
$ bob vulnerability det vuln_scores/{licit,spoof}/scores-dev -o fig5.c.pdf --fnmr 0.0214 --no-real-data --title ' '
$ bob vulnerability fmr_iapmr vuln_scores/{licit,spoof}/scores-{dev,eval} -o fig5.d.pdf --no-disp-legend --title ' '
$ bob vulnerability epc vuln_scores/{licit,spoof}/scores-{dev,eval} -o fig5.e.pdf --title ' '
$ bob vulnerability epsc vuln_scores/{licit,spoof}/scores-{dev,eval} -o fig5.f.pdf -nI --titles 'EPSC with $\beta = 0.50$' --no-disp-legend

Contact

For questions or reporting issues to this software package, contact our development mailing list.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bob.hobpad2.chapter20-1.0.2.zip (35.2 kB view details)

Uploaded Source

File details

Details for the file bob.hobpad2.chapter20-1.0.2.zip.

File metadata

  • Download URL: bob.hobpad2.chapter20-1.0.2.zip
  • Upload date:
  • Size: 35.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.1 setuptools/33.1.1.post20170713 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.1

File hashes

Hashes for bob.hobpad2.chapter20-1.0.2.zip
Algorithm Hash digest
SHA256 aadea5c987f91f67dfcf833ea226c5bd36833f5053f6f6c3273e2df34e84086a
MD5 3d523d6d8c807ad4aa10c976f2dd1c21
BLAKE2b-256 2f516e38eda72651ef00bb348cb558dc197bfdd8b05d5e0807508f5161ce5b29

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page