Run biometric recognition algorithms on videos
Project description
.. vim: set fileencoding=utf-8 :
.. Fri 26 Aug 16:12:17 CEST 2016
.. image:: http://img.shields.io/badge/docs-stable-yellow.svg
:target: http://pythonhosted.org/bob.bio.video/index.html
.. image:: http://img.shields.io/badge/docs-latest-orange.svg
:target: https://www.idiap.ch/software/bob/docs/latest/bob/bob.bio.video/master/index.html
.. image:: https://gitlab.idiap.ch/bob/bob.bio.video/badges/v3.1.0/build.svg
:target: https://gitlab.idiap.ch/bob/bob.bio.video/commits/v3.1.0
.. image:: https://img.shields.io/badge/gitlab-project-0000c0.svg
:target: https://gitlab.idiap.ch/bob/bob.bio.video
.. image:: http://img.shields.io/pypi/v/bob.bio.video.svg
:target: https://pypi.python.org/pypi/bob.bio.video
.. image:: http://img.shields.io/pypi/dm/bob.bio.video.svg
:target: https://pypi.python.org/pypi/bob.bio.video
=========
Run video face recognition algorithms
=========
This package is part of the signal-processing and machine learning toolbox
Bob_.
This package contains functionality to run video face recognition experiments.
It is an extension to the `bob.bio.base <http://pypi.python.org/pypi/bob.bio.base>`_ package, which provides the basic scripts.
In this package, wrapper classes are provide, which allow to run traditional image-based face recognition algorithms on video data.
Installation
------------
Follow our `installation`_ instructions. Then, using the Python interpreter
provided by the distribution, bootstrap and buildout this package::
$ python bootstrap-buildout.py
$ ./bin/buildout
Contact
-------
For questions or reporting issues to this software package, contact our
development `mailing list`_.
.. Place your references here:
.. _bob: https://www.idiap.ch/software/bob
.. _installation: https://www.idiap.ch/software/bob/install
.. _mailing list: https://www.idiap.ch/software/bob/discuss
.. Fri 26 Aug 16:12:17 CEST 2016
.. image:: http://img.shields.io/badge/docs-stable-yellow.svg
:target: http://pythonhosted.org/bob.bio.video/index.html
.. image:: http://img.shields.io/badge/docs-latest-orange.svg
:target: https://www.idiap.ch/software/bob/docs/latest/bob/bob.bio.video/master/index.html
.. image:: https://gitlab.idiap.ch/bob/bob.bio.video/badges/v3.1.0/build.svg
:target: https://gitlab.idiap.ch/bob/bob.bio.video/commits/v3.1.0
.. image:: https://img.shields.io/badge/gitlab-project-0000c0.svg
:target: https://gitlab.idiap.ch/bob/bob.bio.video
.. image:: http://img.shields.io/pypi/v/bob.bio.video.svg
:target: https://pypi.python.org/pypi/bob.bio.video
.. image:: http://img.shields.io/pypi/dm/bob.bio.video.svg
:target: https://pypi.python.org/pypi/bob.bio.video
=========
Run video face recognition algorithms
=========
This package is part of the signal-processing and machine learning toolbox
Bob_.
This package contains functionality to run video face recognition experiments.
It is an extension to the `bob.bio.base <http://pypi.python.org/pypi/bob.bio.base>`_ package, which provides the basic scripts.
In this package, wrapper classes are provide, which allow to run traditional image-based face recognition algorithms on video data.
Installation
------------
Follow our `installation`_ instructions. Then, using the Python interpreter
provided by the distribution, bootstrap and buildout this package::
$ python bootstrap-buildout.py
$ ./bin/buildout
Contact
-------
For questions or reporting issues to this software package, contact our
development `mailing list`_.
.. Place your references here:
.. _bob: https://www.idiap.ch/software/bob
.. _installation: https://www.idiap.ch/software/bob/install
.. _mailing list: https://www.idiap.ch/software/bob/discuss
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
bob.bio.video-3.1.0.zip
(1.2 MB
view details)
File details
Details for the file bob.bio.video-3.1.0.zip
.
File metadata
- Download URL: bob.bio.video-3.1.0.zip
- Upload date:
- Size: 1.2 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | dc38addb857b62f36198d9ee426e1ca83c2c1f5a2ca2739360ff5fbde2b7cae8 |
|
MD5 | 5fb55291dfe651c799857bf6669a4c3a |
|
BLAKE2b-256 | 0d6dd05bdd733f89c05499415f37adab6c2a04a9025f2447edf1b88472576f59 |