Run biometric recognition algorithms on videos
Project description
.. vim: set fileencoding=utf-8 :
.. Fri 26 Aug 16:12:17 CEST 2016
.. image:: http://img.shields.io/badge/docs-v3.3.0-yellow.svg
:target: https://www.idiap.ch/software/bob/docs/bob/bob.bio.video/v3.3.0/index.html
.. image:: http://img.shields.io/badge/docs-latest-orange.svg
:target: https://www.idiap.ch/software/bob/docs/bob/bob.bio.video/master/index.html
.. image:: https://gitlab.idiap.ch/bob/bob.bio.video/badges/v3.3.0/build.svg
:target: https://gitlab.idiap.ch/bob/bob.bio.video/commits/v3.3.0
.. image:: https://gitlab.idiap.ch/bob/bob.bio.video/badges/v3.3.0/coverage.svg
:target: https://gitlab.idiap.ch/bob/bob.bio.video/commits/v3.3.0
.. image:: https://img.shields.io/badge/gitlab-project-0000c0.svg
:target: https://gitlab.idiap.ch/bob/bob.bio.video
.. image:: http://img.shields.io/pypi/v/bob.bio.video.svg
:target: https://pypi.python.org/pypi/bob.bio.video
=========
Run video face recognition algorithms
=========
This package is part of the signal-processing and machine learning toolbox
Bob_.
This package contains functionality to run video face recognition experiments.
It is an extension to the `bob.bio.base <http://pypi.python.org/pypi/bob.bio.base>`_ package, which provides the basic scripts.
In this package, wrapper classes are provide, which allow to run traditional image-based face recognition algorithms on video data.
Installation
------------
Complete Bob's `installation`_ instructions. Then, to install this package,
run::
$ conda install bob.bio.video
Contact
-------
For questions or reporting issues to this software package, contact our
development `mailing list`_.
.. Place your references here:
.. _bob: https://www.idiap.ch/software/bob
.. _installation: https://www.idiap.ch/software/bob/install
.. _mailing list: https://www.idiap.ch/software/bob/discuss
.. Fri 26 Aug 16:12:17 CEST 2016
.. image:: http://img.shields.io/badge/docs-v3.3.0-yellow.svg
:target: https://www.idiap.ch/software/bob/docs/bob/bob.bio.video/v3.3.0/index.html
.. image:: http://img.shields.io/badge/docs-latest-orange.svg
:target: https://www.idiap.ch/software/bob/docs/bob/bob.bio.video/master/index.html
.. image:: https://gitlab.idiap.ch/bob/bob.bio.video/badges/v3.3.0/build.svg
:target: https://gitlab.idiap.ch/bob/bob.bio.video/commits/v3.3.0
.. image:: https://gitlab.idiap.ch/bob/bob.bio.video/badges/v3.3.0/coverage.svg
:target: https://gitlab.idiap.ch/bob/bob.bio.video/commits/v3.3.0
.. image:: https://img.shields.io/badge/gitlab-project-0000c0.svg
:target: https://gitlab.idiap.ch/bob/bob.bio.video
.. image:: http://img.shields.io/pypi/v/bob.bio.video.svg
:target: https://pypi.python.org/pypi/bob.bio.video
=========
Run video face recognition algorithms
=========
This package is part of the signal-processing and machine learning toolbox
Bob_.
This package contains functionality to run video face recognition experiments.
It is an extension to the `bob.bio.base <http://pypi.python.org/pypi/bob.bio.base>`_ package, which provides the basic scripts.
In this package, wrapper classes are provide, which allow to run traditional image-based face recognition algorithms on video data.
Installation
------------
Complete Bob's `installation`_ instructions. Then, to install this package,
run::
$ conda install bob.bio.video
Contact
-------
For questions or reporting issues to this software package, contact our
development `mailing list`_.
.. Place your references here:
.. _bob: https://www.idiap.ch/software/bob
.. _installation: https://www.idiap.ch/software/bob/install
.. _mailing list: https://www.idiap.ch/software/bob/discuss
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
bob.bio.video-3.3.0.zip
(1.2 MB
view details)
File details
Details for the file bob.bio.video-3.3.0.zip
.
File metadata
- Download URL: bob.bio.video-3.3.0.zip
- Upload date:
- Size: 1.2 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c1b256d931aa304c94d99c833fc279533d93ad42aaafedfdcc9f276e6b0e6ba1 |
|
MD5 | ca090f4f7b3e15a2c1fa0aa04cdf26d7 |
|
BLAKE2b-256 | 984063fd8f8e083d7b6401abfa654a9a05b039ba534726b7e412d055a32e464a |