Skip to main content

Optical Flow framework based on Horn & Schunck

Project description

http://img.shields.io/badge/docs-v2.0.18-yellow.svg http://img.shields.io/badge/docs-latest-orange.svg https://gitlab.idiap.ch/bob/bob.ip.optflow.hornschunck/badges/v2.0.18/build.svg https://gitlab.idiap.ch/bob/bob.ip.optflow.hornschunck/badges/v2.0.18/coverage.svg https://img.shields.io/badge/gitlab-project-0000c0.svg http://img.shields.io/pypi/v/bob.ip.optflow.hornschunck.svg

Implementation of Horn & Schunck’s Optical Flow Framework for Bob

This package is part of the signal-processing and machine learning toolbox Bob. It contains a simple Python wrapper to an open-source Optical Flow estimator based on the works by Horn & Schunck:

@article{Horn_Schunck_1981,
  author = {Horn, B. K. P. and Schunck, B. G.},
  title = {Determining optical flow},
  year = {1981},
  booktitle = {Artificial Intelligence},
  volume = {17},
  pages = {185--203},
}

Installation

Complete Bob’s installation instructions. Then, to install this package, run:

$ conda install bob.ip.optflow.hornschunck

Contact

For questions or reporting issues to this software package, contact our development mailing list.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for bob.ip.optflow.hornschunck, version 2.0.18
Filename, size File type Python version Upload date Hashes
Filename, size bob.ip.optflow.hornschunck-2.0.18.zip (60.6 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page