This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description

Heterogeneous Face Recognition using Inter-Session Variability Modelling

This package provides the source code to run the experiments published in the paper Heterogeneous Face Recognition using Inter-Session Variability Modelling.

If you use this package and/or its results, please cite the following publications:

  1. The original paper with the counter-measure explained in details:

    @inproceedings{Pereira_CVPRW2016,
      author = {Pereira, Tiago de Freitas and Marcel, S{\'{e}}bastien},
      keywords = {Face Recognition, Session Variability Modelling, Heterogeneous Face Recognition},
      month = jun,
      year = {2016},
      title = {Heterogeneous Face Recognition using Inter-Session Variability Modelling},
      journal = {IEEE Computer Society Workshop on Biometrics - CVPRW 2016},
    }
    
  2. Bob as the core framework used to run the experiments:

    @inproceedings{Anjos_ACMMM_2012,
      author = {A. Anjos AND L. El Shafey AND R. Wallace AND M. G\"unther AND C. McCool AND S. Marcel},
      title = {Bob: a free signal processing and machine learning toolbox for researchers},
      year = {2012},
      month = oct,
      booktitle = {20th ACM Conference on Multimedia Systems (ACMMM), Nara, Japan},
      publisher = {ACM Press},
    }
    

Raw Data

This package does not provide the dataset used in the paper. They must be downloaded separately from CUHK_CUFS (http://mmlab.ie.cuhk.edu.hk/archive/facesketch.html) and CBSR NIR-VIS-2.0 (http://www.cbsr.ia.ac.cn/english/NIR-VIS-2.0-Database.html).

Installation

Note

If you are reading this page through our GitHub portal and not through PyPI, note the development tip of the package may not be stable or become unstable in a matter of moments.

Go to http://pypi.python.org/pypi/antispoofing.lbptop to download the latest stable version of this package.

There are 2 options you can follow to get this package installed and operational on your computer: you can use automatic installers like pip (or easy_install) or manually download, unpack and use zc.buildout to create a virtual work environment just for this package.

Using an automatic installer

Using pip is the easiest (shell commands are marked with a $ signal):

$ pip install bob.paper.CVPRW_2016

You can also do the same with easy_install:

$ easy_install bob.paper.CVPRW_2016

This will download and install this package plus any other required dependencies. It will also verify if the version of Bob you have installed is compatible.

This scheme works well with virtual environments by virtualenv or if you have root access to your machine. Otherwise, we recommend you use the next option.

Using zc.buildout

Download the latest version of this package from PyPI and unpack it in your working area. The installation of the toolkit itself uses buildout. You don’t need to understand its inner workings to use this package. Here is a recipe to get you started:

$ python bootstrap.py
$ ./bin/buildout

Reproducibility

Please, check our documentation in order to reproduce the results of the paper.

Release History

Release History

1.0.2

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

1.0.1

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

1.0.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

1.0.0b1

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

1.0.0b0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
bob.paper.CVPRW_2016-1.0.2.zip (40.5 kB) Copy SHA256 Checksum SHA256 Source Jun 23, 2016

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting