Utilities for helping with pipeline development and integration with 3rd party MLOps services.
Project description
Bodywork Pipeline Utilities
Utilities for helping with pipeline development and integration with 3rd party MLOps services.
|-- aws
|-- Dataset
|-- get_latest_csv_dataset_from_s3
|-- get_latest_parquet_dataset_from_s3
|-- put_csv_dataset_to_s3
|-- put_parquet_dataset_to_s3
|-- Model
|-- get_latest_pkl_model_from_s3
|-- logging
|-- configure_logger
AWS
A simple dataset and model management framework built on S3 object storage.
Datsets
Training data files in CSV or Parquet format are saved to a S3 bucket using filenames with an ISO timestamp component:
my-s3-project-bucket/
|
|-- datasets/
| |-- ...
| |-- dataset_file_2021-07-10T07:42:23.csv
| |-- dataset_file_2021-07-11T07:45:12.csv
| |-- dataset_file_2021-07-12T07:41:02.csv
You can use put_csv_dataset_to_s3
to persist a Pandas DataFrame directly to S3 with a compatible filename, or handle this yourself independently. The latest training data file can be retrieved using get_latest_csv_dataset_from_s3
, which will return a Dataset
object, which is an object with the following fields:
class Dataset(NamedTuple):
"""Container for downloaded datasets and associated metadata."""
data: DataFrame
datetime: datetime
bucket: str
key: str
hash: str
AWS S3 will compute the MD5 hash of every object uploaded to it (referred to as its Entity Tag). This is retrieved from S3 together with other basic metadata about the object. For example,
get_latest_csv_dataset_from_s3("my-s3-project-bucket", "datasets")
# Dataset(
# data=...,
# datetime(2021, 7, 12, 7, 41, 02),
# bucket="my-s3-project-bucket"),
# key="datasets/dataset_file_2021-07-12T07:41:02.csv",
# hash="759eccda4ceb7a07cda66ad4ef7cdfbc"
# )
This, together with S3 object versioning (if enabled), can be used to track the precise dataset used to train a model.
Models
The Model
class is a simple wrapper for a ML model that adds basic model metadata and the ability to serialise the model directly to S3. It requires a Dataset
object containing the data used train the model, so that the model artefact can be explicitly linked to the precise version of the data used to train it. For example,
from sklearn.tree import DecisionTreeRegressor
dataset = get_latest_csv_dataset_from_s3("my-s3-project-bucket", "datasets")
model = Model("my-model", DecisionTreeRegressor(), dataset, {"features": ["x1", "x2"], "foo": "bar"})
model
# name: my-model
# model_type: <class 'sklearn.tree._classes.DecisionTreeRegressor'>
# model_timestamp: 2021-07-12 07:46:08
# model_hash: ab6f998e0f5d8829fcb0017819c45020
# train_dataset_key: datasets/dataset_file_2021-07-12T07:41:02.csv
# train_dataset_hash: 759eccda4ceb7a07cda66ad4ef7cdfbc
# pipeline_git_commit_hash: e585fd3
Model objects can be directly serialised to S3,
model.put_model_to_s3("my-s3-project-bucket", "models")
Which will create objects in a S3 bucket as follows,
my-s3-project-bucket/
|
|-- models/
| |-- ...
| |-- serialised_model_2021-07-10T07:47:33.pkl
| |-- serialised_model_2021-07-11T07:49:14.pkl
| |-- serialised_model_2021-07-12T07:46:08.pkl
The Model
class is intended as a base class, suitable for pickle-able models (e.g. from Scikit-Learn). More complex model types (e.g. PyTorch or PyMC3 models) should inherit from Model
and override the appropriate methods.
Logging
The configure_logger
function returns a Python logger configures to print logs using the Bodywork log format. For example,
log = configure_logger()
log.into("foo")
# 2021-07-14 07:57:10,854 - INFO - pipeline.train - foo
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file bodywork_pipeline_utils-0.1.5.tar.gz
.
File metadata
- Download URL: bodywork_pipeline_utils-0.1.5.tar.gz
- Upload date:
- Size: 13.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.7.1 requests/2.26.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3a4545c2545fdad4f8e09957b5dbc414bb3d15f380bf739390c737ea602502c3 |
|
MD5 | 8a749107af8e99d104ca0c63343ad872 |
|
BLAKE2b-256 | d0bea9444c56fdf28686bbed3936b199da922c026a672b4432d5fcd8c0d61194 |
File details
Details for the file bodywork_pipeline_utils-0.1.5-py3-none-any.whl
.
File metadata
- Download URL: bodywork_pipeline_utils-0.1.5-py3-none-any.whl
- Upload date:
- Size: 13.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.7.1 requests/2.26.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 23528d6545e9a6aa081c6538672795370ecd17943c9b8d67cf9178af22f2bb80 |
|
MD5 | 605e884bf9bcce2861c04dd37f01fd1f |
|
BLAKE2b-256 | 8c2aaaa8b31374a9674a407f7d61d79df708ac72c298516af1f97f3f1ecfdb0d |