A nano probabilistic programming language for Python
Project description
Pioupiou 🐤
Introduction
Pioupiou is a nano probabilistic programming language, embedded into Python.
Use it to define probabilistic models :
>>> import pioupiou as pp
>>> a, b = 0.5, 1.0
>>> X = pp.Uniform(0.0, 1.0)
>>> E = pp.Normal(0.0, 0.1)
>>> Y = a * X + b + E
and to simulate them :
>>> n = 1000 # number of samples
>>> omega = pp.Omega(n)
>>> x, y = X(omega), Y(omega)
>>> x # doctest: +ELLIPSIS
array([6.36961687e-01, 2.69786714e-01, 4.09735239e-02, ..., 3.80007897e-01])
>>> y # doctest: +ELLIPSIS
array([1.09588258, 1.22942954, 1.01954509, 0.99213115, ..., 1.14366864])
That's about it! Use this data as you see fit.
Getting started
Install the latest version of pioupiou with:
$ pip install --upgrade git+https://github.com/boisgera/pioupiou.git
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file boisgera-pioupiou-0.0a11.tar.gz
.
File metadata
- Download URL: boisgera-pioupiou-0.0a11.tar.gz
- Upload date:
- Size: 5.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.6.0.post20210108 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0bd7d1065ea04ea6273997a8a0456c53efd0eaa9f5b820b488ed71dac2b2ab0f |
|
MD5 | b3d3d20ca74cf367e5576e8afe7eb6e3 |
|
BLAKE2b-256 | f298c3ef09a2375d0354b6b85c2c3d24f0e12dfcb27262c0ec324986de849031 |
File details
Details for the file boisgera_pioupiou-0.0a11-py3-none-any.whl
.
File metadata
- Download URL: boisgera_pioupiou-0.0a11-py3-none-any.whl
- Upload date:
- Size: 5.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.6.0.post20210108 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 428d74685ca5f5d491a18f541f4c7b4744b1e6f0aa07e45b1b0539c144558af6 |
|
MD5 | f0073d65a37c840140572e4ef3e39377 |
|
BLAKE2b-256 | 016100d30d1c0d4eee01683dd6a6d82932156cc3f290b7033db10c8e0991fb49 |