Skip to main content

Cell Segmentation for Spatial Transcriptomics Data using BOMS

Project description

BOMS : Cell Segmentation method for Spatial Transcriptomics

BOMS Overview

BOMS is a tool for cell segmentation in fluorescent in-situ hybridization (FISH) based Spatial Transcriptomics datasets. It takes as input the gene locations and labels. It assumes that a cell body is homogenous in its transcriptional signature and uses the similarity of these neighborhoods to cluster them together as one cell. The method can also incorporate the flows obtained from Cellpose Segmentation on DAPI/Cell Membrane channels to improve its cell segmentation.

Installation

The package requires Python > 3.9. The package can be installed using pip as follows:

pip install boms

Usage

The data for the method is provided in the form of three numpy arrays : x representing the x coordinates of the mRNA spots, y representing the y coordinates of the mRNA spots and g representing the labels of the mRNA spots. The cell segmentation can be performed as follows:

from boms import run_boms

"""
:param epochs: Number of iterations for the BOMS algorithm. Recommendation: 30
:param h_s: Spatial Bandwidth. Recommendation: Roughly equal to the radius of the cell body.
:param h_r: Range Bandwidth. Recommendation: 0.3 - 0.5
:param K: Number of Nearest Neighbors to form the Neighborhood Gene Expression Profile. Recommendation: 30

:return modes: N x (2 + no. of genes) array containing the final modes.
:return seg: N x 1 array containing the final segmentation.
"""

modes, seg = run_boms(x, y, g, epochs=30, h_s=10, h_r=0.3, K=30)

Demo

A demo notebook is available to run on Google Colab - BOMS Demo

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

boms-1.0.5.tar.gz (18.6 kB view details)

Uploaded Source

Built Distributions

boms-1.0.5-pp310-pypy310_pp73-win_amd64.whl (130.3 kB view details)

Uploaded PyPy Windows x86-64

boms-1.0.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (164.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

boms-1.0.5-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (171.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

boms-1.0.5-pp39-pypy39_pp73-win_amd64.whl (130.3 kB view details)

Uploaded PyPy Windows x86-64

boms-1.0.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (164.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

boms-1.0.5-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (171.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

boms-1.0.5-cp312-cp312-win_amd64.whl (130.5 kB view details)

Uploaded CPython 3.12 Windows x86-64

boms-1.0.5-cp312-cp312-win32.whl (112.7 kB view details)

Uploaded CPython 3.12 Windows x86

boms-1.0.5-cp312-cp312-musllinux_1_1_x86_64.whl (686.2 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

boms-1.0.5-cp312-cp312-musllinux_1_1_i686.whl (722.5 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

boms-1.0.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (164.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

boms-1.0.5-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (172.3 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

boms-1.0.5-cp311-cp311-win_amd64.whl (131.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

boms-1.0.5-cp311-cp311-win32.whl (113.2 kB view details)

Uploaded CPython 3.11 Windows x86

boms-1.0.5-cp311-cp311-musllinux_1_1_x86_64.whl (686.1 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

boms-1.0.5-cp311-cp311-musllinux_1_1_i686.whl (723.5 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

boms-1.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (164.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

boms-1.0.5-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (172.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

boms-1.0.5-cp310-cp310-win_amd64.whl (130.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

boms-1.0.5-cp310-cp310-win32.whl (112.4 kB view details)

Uploaded CPython 3.10 Windows x86

boms-1.0.5-cp310-cp310-musllinux_1_1_x86_64.whl (685.1 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

boms-1.0.5-cp310-cp310-musllinux_1_1_i686.whl (722.0 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

boms-1.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (162.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

boms-1.0.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (171.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

boms-1.0.5-cp39-cp39-win_amd64.whl (130.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

boms-1.0.5-cp39-cp39-win32.whl (112.5 kB view details)

Uploaded CPython 3.9 Windows x86

boms-1.0.5-cp39-cp39-musllinux_1_1_x86_64.whl (685.2 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

boms-1.0.5-cp39-cp39-musllinux_1_1_i686.whl (722.0 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

boms-1.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (162.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

boms-1.0.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (171.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

File details

Details for the file boms-1.0.5.tar.gz.

File metadata

  • Download URL: boms-1.0.5.tar.gz
  • Upload date:
  • Size: 18.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for boms-1.0.5.tar.gz
Algorithm Hash digest
SHA256 75187e1e78ac9eacda923dee3943936625676f2382859636448f14a64e57ea54
MD5 1c89c7724d71bb3f57f589c9c0d4780b
BLAKE2b-256 9851cc19921a18eb3bbe2e68a641b4a830708e7c667fc128c5b3d85c3b7786fa

See more details on using hashes here.

File details

Details for the file boms-1.0.5-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for boms-1.0.5-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 0b5dfbb83748de7885044ecd2cce5d2c5b584ecec836b8941bfceae227d09d2f
MD5 a2767ccd4674ff3d839aa1d794464158
BLAKE2b-256 716710c3463ade12756d983a49502a8a23ca8fae1f84ccf3825d14daf33fce2d

See more details on using hashes here.

File details

Details for the file boms-1.0.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for boms-1.0.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bfa4f1f6b5db1792f81eccada0a4e234e9c8d1efe5b5c4339983ee4bc45de0c6
MD5 b958dea6e0d4431b7c8ffe05871528e4
BLAKE2b-256 d3961fe37c580c8b29b82fa1b430ccbd5345d6887aad9f31fbf765e5417a55e4

See more details on using hashes here.

File details

Details for the file boms-1.0.5-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for boms-1.0.5-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a42d78bf92e2c9b5700b3883402e4b7d9e1646f7c2d464cea4ecdfa13c88544d
MD5 633d1731828bd7067297dce5aef18c77
BLAKE2b-256 495addc39b1fe84719631b179a24aecd7b5ab7db40fd18bd6efebc5c0cd74bbe

See more details on using hashes here.

File details

Details for the file boms-1.0.5-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for boms-1.0.5-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 09cb1cd2c67d0e9bfc71f9507bc947ff325a02edc3d04bf8c280b06b0b1d59da
MD5 6ac0b31990128be8263406040a9aef62
BLAKE2b-256 56d85ed191a0c66b24be0cb722bb5ddcbf1d5982688f7c20972d811eafd8fe7c

See more details on using hashes here.

File details

Details for the file boms-1.0.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for boms-1.0.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3e61a984bb80c4d3a5067b959ba203915c11070322b333326eed2ba0c2befa9b
MD5 f2c59437508418648d31835c673e04d9
BLAKE2b-256 85af41d0900cf9b940394e5c604b20900bde525925c4f6e49ab61e7c1fb63a40

See more details on using hashes here.

File details

Details for the file boms-1.0.5-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for boms-1.0.5-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0548a03baa7628ed88e3eea81e29a231a983eb217d869cc926e66b19d6d9393f
MD5 e84f26e6905421a1f492637c081b1207
BLAKE2b-256 9d0cefdb2e0286b572d39edb04f864cd25746fcdfc82f82ae814abab8ced59af

See more details on using hashes here.

File details

Details for the file boms-1.0.5-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: boms-1.0.5-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 130.5 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for boms-1.0.5-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 31dc7d636ed88e825f7217db256299af065cd1da15808f68285a2dcf0378a00e
MD5 f979cbcf78d7f150434491b9d1b6fc15
BLAKE2b-256 3da4bb2312bc29bdfd3234271c9787a7ee98ab87474dfe3e6a5770ca9866d2d1

See more details on using hashes here.

File details

Details for the file boms-1.0.5-cp312-cp312-win32.whl.

File metadata

  • Download URL: boms-1.0.5-cp312-cp312-win32.whl
  • Upload date:
  • Size: 112.7 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for boms-1.0.5-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 efa7826ef74af5d9d1de08220287e681631133411595516b5cf65d6f27071958
MD5 9edbedae1af0c7f542699843ceb9d559
BLAKE2b-256 71544276c8dfd9351662eb4f3c04e511eedf3cc817e6c1eed2ea29ebfaa60412

See more details on using hashes here.

File details

Details for the file boms-1.0.5-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for boms-1.0.5-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 05ae7d2c8f3a69b3f436c889727c605fe12f902022e993bb11200789b3c027a5
MD5 eb2799b9514fc180096fdb1b4ccdad33
BLAKE2b-256 4d928ef017e30ba3dcc2c5f894b015eb869be4471904acccc438b706e56da6f8

See more details on using hashes here.

File details

Details for the file boms-1.0.5-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for boms-1.0.5-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 012b927c29e7b2b93846022ba846d557db360802e904aa6a30d02ae31faf9d92
MD5 c794459935020ed65bdc8d1f20f10d12
BLAKE2b-256 b88f82d00716e881c39f584e7e9fb646f766b46af53f4fa2bfe8bd07c2083847

See more details on using hashes here.

File details

Details for the file boms-1.0.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for boms-1.0.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cbfd1b965c6ed8f4dc6aa51f46936ad2aaabf45ec3ca486bad8aae059c20d1b5
MD5 03a2cb31f30d72b160c74d1519e58397
BLAKE2b-256 82c54dbd8ef09be0a4e52263a6bf3c026594655d22deeba10e9491100563310d

See more details on using hashes here.

File details

Details for the file boms-1.0.5-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for boms-1.0.5-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6c2397aa431b324a3664da9a2f5890fe17846f6baa47e2507424145c2eef7263
MD5 82cc67b207add2637158ce2536efa9a5
BLAKE2b-256 404d0c6960560f071692d7aea134663ad95983bf79e7f1e660af7695b04eb7e7

See more details on using hashes here.

File details

Details for the file boms-1.0.5-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: boms-1.0.5-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 131.2 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for boms-1.0.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ccd773b174b3c5dcf4de973e700a9e739d894c8fddab47d121026c37ec8dd576
MD5 52de69380f43987c443f84e050c9627f
BLAKE2b-256 e957f85cc7ab967b9f6e300a9b8c0f2a8f5b6d4a1c60b74a2e212a302cf182f0

See more details on using hashes here.

File details

Details for the file boms-1.0.5-cp311-cp311-win32.whl.

File metadata

  • Download URL: boms-1.0.5-cp311-cp311-win32.whl
  • Upload date:
  • Size: 113.2 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for boms-1.0.5-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 e37c203f0b9333045c648613c499f97aed6dd1da0a72599663a48a9934233227
MD5 f40ccbe412b3656c7988864b0f55f446
BLAKE2b-256 869cb0fbc03e1e07b6a5abd1d152b66e0a6a5b3671b33fc5dcdd120834437ac1

See more details on using hashes here.

File details

Details for the file boms-1.0.5-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for boms-1.0.5-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4071054128c403d5f2aa03ac0dc1febbe3c9828e37fbf9975b607f2409f18f8c
MD5 83f9a20a042c10e2f0bfb7b3f9f37738
BLAKE2b-256 2174ddb4d5c8211df5a065682d6a51370494844aacfd6d6584ff91c711dd4fef

See more details on using hashes here.

File details

Details for the file boms-1.0.5-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for boms-1.0.5-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 3bb65ba401f75d71a63730e0e612646a5ca14562213755815ee88963246f8718
MD5 7000b2f999146ddd431e16e3be2e996a
BLAKE2b-256 a71845be1f539cfd649ac59a0892b77ca05c8e47a7e6dcddd4b609159170b36b

See more details on using hashes here.

File details

Details for the file boms-1.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for boms-1.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7580d7f3d01b09cca3c4c6372cd1a0e9118cf7e2b0c134e01ffa6035b55d6dcf
MD5 4179c5eb8020a702413470e7dfa5c5b0
BLAKE2b-256 ec67df5682f8be550a0c789f87e72aa4b433c508d8df9ae2681534a4e59f4ede

See more details on using hashes here.

File details

Details for the file boms-1.0.5-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for boms-1.0.5-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6796d300da82bbb00ab8fc49ab46f559dbbe14d29414d4e89a9739a0286c2fda
MD5 78a9f810e6bb65a6f032151c8c17e382
BLAKE2b-256 7c41978f10beee5222cab47d62e7bce0e9c4894ceac1a76fac95f6bad7b22769

See more details on using hashes here.

File details

Details for the file boms-1.0.5-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: boms-1.0.5-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 130.4 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for boms-1.0.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3294be3dcf595866165f650af62d66c3c2ee8d02b22280857d18ab9a640dc858
MD5 819ca9c21cb3dd9ea5e7a8c91adbf04e
BLAKE2b-256 270f2e49a5a5bc30d85290c0bab337fa855d07f253240474396e806b2cf79bc4

See more details on using hashes here.

File details

Details for the file boms-1.0.5-cp310-cp310-win32.whl.

File metadata

  • Download URL: boms-1.0.5-cp310-cp310-win32.whl
  • Upload date:
  • Size: 112.4 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for boms-1.0.5-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 a7cf7a06a58b21c9d15818d005086e664c347da046e69917dc5f5ac14106d5bf
MD5 2638f8bc2c397bbfda934f0d8ded46af
BLAKE2b-256 f0f1fd70ba812e8201fc73c08dfcf8da32811c49d926eeefc60267229c6fb90c

See more details on using hashes here.

File details

Details for the file boms-1.0.5-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for boms-1.0.5-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e13ea2140b651595bc253df5204c1e403cf7515c1c3119ee4d19cbfe62d04f3c
MD5 cc4b75ee5dfb3472a40dacebcaac71ef
BLAKE2b-256 247a54b3a71c8a2f289a2f80b63aec0fffcb1143afd008d4ca10898b225031f9

See more details on using hashes here.

File details

Details for the file boms-1.0.5-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for boms-1.0.5-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 60c5d06e608b381647cc849c043253ca146636ab15d73f1c451e9a708580e61e
MD5 82c402534d2dce5f368106c326549eef
BLAKE2b-256 ccb1f0f4079103cfd65360743eb6958a5feb2b9133edb35560b9a612d2048b16

See more details on using hashes here.

File details

Details for the file boms-1.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for boms-1.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7640d74ae92b912f2f4f23c3bf131cf22d6020f7a9c87e7f97688014edb9492c
MD5 d05682778d8f887883f244f5b2b5287e
BLAKE2b-256 649350c4000d0509e9a2fe612624a5a37dce0e574b1b71f90e7efae854713801

See more details on using hashes here.

File details

Details for the file boms-1.0.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for boms-1.0.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7e77ff8cada2fab0243f6a66d6c67a5255198c882ca753606f3680273425fc94
MD5 9605241376ec9ab6ffbb54944b481013
BLAKE2b-256 a84f46d5cf7a2bc9c81b465222788976ef347618f87318b0df241551530d8ffe

See more details on using hashes here.

File details

Details for the file boms-1.0.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: boms-1.0.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 130.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for boms-1.0.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0cd29ef97bbecf441fad45274d651eb1e608fc1eda5ffbe813770fa8242f1945
MD5 1f860ee674a45935322f2f3f21faadff
BLAKE2b-256 78066ac11faee64af9e64c050a6881f459e706fd9e55ee6382509a9ac4a38a81

See more details on using hashes here.

File details

Details for the file boms-1.0.5-cp39-cp39-win32.whl.

File metadata

  • Download URL: boms-1.0.5-cp39-cp39-win32.whl
  • Upload date:
  • Size: 112.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for boms-1.0.5-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 969b0f98210dea8c27335c611eeb4293a1fe66399b909fdeb752d5fb5ccbab2f
MD5 c52ae7dddc9f4e0d9c7ab74d3e3861f9
BLAKE2b-256 a43db4539b02e94ea73dbb3d268a44db22043756fda8fc6f1408cd8e9fcc0f33

See more details on using hashes here.

File details

Details for the file boms-1.0.5-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for boms-1.0.5-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 514727447ed90ec60b65826e722824cd0355c5fa6e77007b12821196babd7919
MD5 4473e3214d4bd931515efc352b58b869
BLAKE2b-256 2f6a5a3fae52b5db5e2a76dba902f7dc86f1c8367bb525a6a35c8fad0764a0eb

See more details on using hashes here.

File details

Details for the file boms-1.0.5-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for boms-1.0.5-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f77f60e367b038980d2cfcc1c95c3cfc94ccac1e710d8ad366a5295d31c082ad
MD5 0c27dc30ea5c96c4c5edd0c85d2648b2
BLAKE2b-256 96b4cdb21dbcd0b9bc509c12689db10beae252e9ce526843dae445caa6aa968c

See more details on using hashes here.

File details

Details for the file boms-1.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for boms-1.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 68dc84060ace1555f291e078ec2920d4f1d2f3808049a928d4a96bd85e621e79
MD5 637220152d6bb4be5cebb140ace44741
BLAKE2b-256 434e66a8c5c3d2a18012f0c88fd6c052cf414cc81d74161c7d66903a801dd2d8

See more details on using hashes here.

File details

Details for the file boms-1.0.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for boms-1.0.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c89c5e5406032abe50c8dc5f99072b33ecd4c5dd81e87522f0f529c28bcd3cdc
MD5 92ebd561889f5ded9d04dc5d90d7673d
BLAKE2b-256 a665d992a611ed987729b71da845a3c2724fece6beb0c28b5b56403dccbb986c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page