Skip to main content

Created for ONS. Proof-of-concept mmap'd Rust word2vec implementation linked with category matching

Project description

bonn-py

NLP Category-Matching tools

A Rust microservice to match queries on the ONS Website to groupings in the ONS taxonomy

Getting started

Set up taxonomy.json

This should be adapted from the taxonomy.json.example and placed in the root directory.

Download or create embeddings

These are most simply sourced as pretrained fifu models, but can be dynamically generated using the embedded FinalFusion libraries.

To build wheels for distribution, use:

make

Configuration

Configuration

Environment variable Default Description
CATEGORY_API_HOST 0.0.0.0 Host
CATEGORY_API_PORT 28800 Port that the API is listening on
CATEGORY_API_DUMMY_RUN false Returns empty list for testing purposes
CATEGORY_API_DEBUG_LEVEL_FOR_DYNACONF "DEBUG" Verbosity of dynaconf internal logging
CATEGORY_API_ENVVAR_PREFIX_FOR_DYNACONF "CATEGORY_API" The prefix of which variables to be taken into dynaconf configuration
CATEGORY_API_FIFU_FILE "test_data/wiki.en.fifu" The location of the final fusion file
CATEGORY_API_THRESHOLD 0.4 Threshold of what's considered a low-scoring category
CATEGORY_API_CACHE_S3_BUCKET S3 for bucket for cache files in format "s3://"
--------core variables------------ --------- -----------
BONN_CACHE_TARGET "cache.json" Cache target
BONN_ELASTICSEARCH_HOST "http://localhost:9200" Elasticsearch host
BONN_REBUILD_CACHE true Should cache be rebuild
BONN_TAXONOMY_LOCATION "test_data/taxonomy.json" Location of taxonomy
BONN_ELASTICSEARCH_INDEX "ons1639492069322" Location of taxonomy
BONN_WEIGHTING__C 1 Word vectors based on the words in the category name
BONN_WEIGHTING__SC 2 Word vectors based on the words in the sub-categories name
BONN_WEIGHTING__SSC 2 Word vectors based on the words in the sub-sub-categories name
BONN_WEIGHTING__WC 6 Based on a bag of words found in the metadata of the datasets found in the categories
BONN_WEIGHTING__WSSC 8 Based on a bag of words found in the metadata of the datasets found in the sub-sub-categories

Manual building

Quick Local Setup

  1. setup .env file - $ cp .env.local .env

  2. make wheels

  3. make sure you've placed taxonomy.json in the root folder (This should be obtained from ONS).

  4. [TODO: genericize] you need an elasticsearch container forwarded to port:9200 (you can customize the port in .env) with a dump matching the appropriate schema https://gitlab.com/flaxandteal/onyx/dp-search-api in this readme you can checkout how to setup elasticsearch.

Install finalfusion utils

cd core
RUSTFLAGS="-C link-args=-lcblas -llapack" cargo install finalfusion-utils --features=opq

Optional: Convert the model to quantized fifu format

Note: if you try to use the full wiki bin you'll need about 128GB of RAM...

finalfusion quantize -f fasttext -q opq <fasttext.bin> fasttext.fifu.opq

Install deps and build

poetry shell
cd core
poetry install
cd ../api
poetry install
exit

Run

poetry run python -c "from bonn import FfModel; FfModel('test_data/wiki.en.fifu').eval('Hello')"

Create cache

You can create a cache with the following command:

poetry run python -m bonn.extract

This assumes that the correct environment variables for the NLP model, taxonomy and Elasticsearch are set.

Algorithm

The following requirements were identified:

  • Fast response to live requests
  • Low running resource requirements, as far as possible
  • Ability to limit risk of unintended bias in results, and making results explainable
  • Minimal needed preprocessing of data (at least for first version)
  • Non-invasive - ensuring that the system can enhance existing work by ONS teams, with minimal changes required to incorporate
  • Runs effectively and reproducibly in ONS workflows

We found that the most effective approach was to use the standard Wikipedia unstructured word2vec model as the ML basis.

This has an additional advantage that we have been able to prototype incorporating other language category matching into the algorithm, although further work is required, including manual review by native speakers and initial results suggest that a larger language corpus would be required for training.

Using finalfusion libraries in Rust enables mmapping for memory efficiency.

Category Vectors

A bag of words is formed, to make a vector for the category - a weighted average of the terms, according to the attribute contributing it:

Grouping Score basis
Category (top-level) Literal words within title
Subcategory (second-level) Literal words within title
Subsubcategory (third-level) Literal words within title
Related words across whole category Common thematic words across all datasets within the category
Related words across subsubcategory Common thematic words across all datasets within the subsubcategory

To build a weighted bag of words, the system finds thematically-distinctive words occurring in dataset titles and descriptions present in the categories, according to the taxonomy. The "thematic distinctiveness" of words in a dataset description is defined by exceeding a similarity threshold to terms in the category title.

These can then be compared to search queries word-by-word, obtaining a score for each taxonomy entry, for a given phrase.

Scoring Adjustment

In addition to the direct cosine similarity of these vectors, we:

  • remove any stopwords from the search scoring, with certain additional words that should not affect the category matching (“data”, “statistics”, “measure(s)”)
  • apply an overall significance boost for a category, using the magnitude of the average word vector for its bag as a proxy for how “significant” it is that it matches a query phrase (so categories that match overly frequently, such as “population”, are slightly deprioritized)
  • enhance or reduce contribution from each of the words in the query based on their commonality across categories.

To do the last, a global count of (lemmatized) words appearing in dataset descriptions/titles across all categories is made, and common terms are deprioritized within the bag according to an exponential decay function - this allows us to rely more heavily on words that strongly signpost a category (such as “education” or “school”) without being confounded by words many categories contain (such as “price” or “economic”).

Once per-category scores for a search phrase are obtained, we filter them based on:

  • appearance thresholds, to ensure we only return matches over a minimal viable score;
  • a signal-to-noise ratio filter (SNR) that returns a small number of notably high-scoring categories or a larger group of less distinguishable top scorers, according to a supplied SNR ratio.

License

Prepared by Flax & Teal Limited for ONS Alpha project. Copyright © 2022, Office for National Statistics (https://www.ons.gov.uk)

Released under MIT license, see LICENSE for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bonn-1.0.7.tar.gz (44.9 kB view details)

Uploaded Source

Built Distributions

bonn-1.0.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (521.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

bonn-1.0.7-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (587.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

bonn-1.0.7-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (574.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

bonn-1.0.7-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (505.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

bonn-1.0.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (509.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

bonn-1.0.7-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (548.4 kB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

bonn-1.0.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (522.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

bonn-1.0.7-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (588.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

bonn-1.0.7-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (574.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

bonn-1.0.7-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (505.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

bonn-1.0.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (509.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

bonn-1.0.7-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (548.2 kB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

bonn-1.0.7-cp312-none-win_amd64.whl (355.9 kB view details)

Uploaded CPython 3.12 Windows x86-64

bonn-1.0.7-cp312-none-win32.whl (339.3 kB view details)

Uploaded CPython 3.12 Windows x86

bonn-1.0.7-cp312-cp312-macosx_11_0_arm64.whl (451.1 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

bonn-1.0.7-cp312-cp312-macosx_10_12_x86_64.whl (480.2 kB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

bonn-1.0.7-cp311-none-win_amd64.whl (355.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

bonn-1.0.7-cp311-none-win32.whl (339.3 kB view details)

Uploaded CPython 3.11 Windows x86

bonn-1.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (522.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

bonn-1.0.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (587.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

bonn-1.0.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (574.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

bonn-1.0.7-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (505.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARMv7l

bonn-1.0.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (509.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

bonn-1.0.7-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (550.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

bonn-1.0.7-cp311-cp311-macosx_11_0_arm64.whl (450.8 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

bonn-1.0.7-cp311-cp311-macosx_10_12_x86_64.whl (480.5 kB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

bonn-1.0.7-cp310-none-win_amd64.whl (355.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

bonn-1.0.7-cp310-none-win32.whl (339.3 kB view details)

Uploaded CPython 3.10 Windows x86

bonn-1.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (522.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

bonn-1.0.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (587.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

bonn-1.0.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (574.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

bonn-1.0.7-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (505.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARMv7l

bonn-1.0.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (509.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

bonn-1.0.7-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (550.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

bonn-1.0.7-cp310-cp310-macosx_11_0_arm64.whl (450.8 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

bonn-1.0.7-cp310-cp310-macosx_10_12_x86_64.whl (480.5 kB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

bonn-1.0.7-cp39-none-win_amd64.whl (356.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

bonn-1.0.7-cp39-none-win32.whl (338.4 kB view details)

Uploaded CPython 3.9 Windows x86

bonn-1.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (522.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

bonn-1.0.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (588.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

bonn-1.0.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (575.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

bonn-1.0.7-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (505.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARMv7l

bonn-1.0.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (510.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

bonn-1.0.7-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (548.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

bonn-1.0.7-cp39-cp39-macosx_11_0_arm64.whl (450.9 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

bonn-1.0.7-cp39-cp39-macosx_10_12_x86_64.whl (480.5 kB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

bonn-1.0.7-cp38-none-win_amd64.whl (356.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

bonn-1.0.7-cp38-none-win32.whl (339.4 kB view details)

Uploaded CPython 3.8 Windows x86

bonn-1.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (522.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

bonn-1.0.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (588.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

bonn-1.0.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (574.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

bonn-1.0.7-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (505.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARMv7l

bonn-1.0.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (509.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

bonn-1.0.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (548.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

bonn-1.0.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (522.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

bonn-1.0.7-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (588.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

bonn-1.0.7-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (575.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

bonn-1.0.7-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (505.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARMv7l

bonn-1.0.7-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (510.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

bonn-1.0.7-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (550.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

File details

Details for the file bonn-1.0.7.tar.gz.

File metadata

  • Download URL: bonn-1.0.7.tar.gz
  • Upload date:
  • Size: 44.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for bonn-1.0.7.tar.gz
Algorithm Hash digest
SHA256 a2601a3137e1fb84c49c5a5aee98537bad5d4aa72ad34accec1f246ec6870740
MD5 1978cccab28edd4e32b5fae01e0ab121
BLAKE2b-256 5d1ef4117cff32db27fff284ad4aa026613a5f4e3bd208ee4a4aeb9aec1fe5e0

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 195c8a465b26a2e547d442f0c6a90e99fe8b7dc5caff0ae189d0cafff7d12ebc
MD5 0147bea70cdb37b6f237b56122712465
BLAKE2b-256 5a0118d38d2a4fb91fb17a2300c83a68ce0c648f730714353fa2360ffeb3e138

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 1a2c688f9b6e8a422d33b8bf2c32da173ea40f9e757fb767dade4e4488abe14a
MD5 fe7451f6e3718f65e084cc436a260482
BLAKE2b-256 983ee4fa7553c1a907734638226984570f7c6390d202eefe345b5180c2957541

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 764249fd3b21d3a7cebcd07a8b73c0182582fbdeac43fc528ae24c8650495ad1
MD5 1cb6ad0d7e22499862b3be1a383e2f38
BLAKE2b-256 a430430b37c789f0c0a046123ee53b9f28710239d8f9e69fb8b8b75783bc9723

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 5f8624b2f4812f5feb7c1ce6a8da1dac74145dcb0e417f195b97e781f7fed96f
MD5 0f4ed5498e30da4183ae4635beca95c3
BLAKE2b-256 5c2f0c114cbb0f45761d1f9c4ae224e37515a02ebb2a6258df4979c6212733a8

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 72a282a557baff069277fd79306dd8313bce073bd03bc227a59237d24df2e800
MD5 5c9aaf37f8a8c81bba18e7e135023bf2
BLAKE2b-256 e6d81a684c014a526f84b712d5a3288d7aef8cd146a1a419cb9b01ce7fe66547

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 8947402720f10f2aaeec65b27bf12dce4c9f7010368c62ed76d99d68ef3d0884
MD5 764729b80b9fe4bde2b1b65d713ebf73
BLAKE2b-256 b1de7d40e22734422c19ba407ea24fc938fb0502cf026c7d9298d3e8a7bab1ec

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 10adfda6a6ce84672a263ea2413246b0b10ddd5988ca3bbf8961e8863be5f334
MD5 6df3d79600026292eb5f5309872bccbc
BLAKE2b-256 2dcd9790aa43dddf9c189be3d75daf10fbdbd1651a31e7bf5e6ba2118e98edf0

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 6c215ac9aa1363a234a6e22d993397b7e3519d05f6013cbcdcfb39cd83fb904a
MD5 5f0e8c3e1cbf2948c6be486f4e06c248
BLAKE2b-256 600f6a2b7bcb57b84fd8b58b4ad1c6d9124e25da0b6d73cdd599acec0e58022f

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 d7963a9bb899889458c22fb1156222dca55366682aeb93f5eec1eb8e5cac61dc
MD5 1f89020e1fe71f8d708bc6070fa3b55d
BLAKE2b-256 1e7af858c319e38829a36502fef6df0a7574408aa9b8426662fdda81857c6827

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 622683a92fccab9a4c187883a2350797d3b5a80b722fbd33d3afe30bc00a28f0
MD5 70b7363ef6bf35b20146aca7f5bcc79d
BLAKE2b-256 c6ae241ade92a9f69360e88b806b75de18205a2dcbd2931cc8895c23b9b412d5

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 92a50a0345c18303c87d5a045c5750468d2fa10cebeaf28fa881b89578f157a3
MD5 1b56faf2f14d2e43348dd59845f322dc
BLAKE2b-256 fa766b826ddcb80e8a7a1b0116e6f063c3bb47c80cecafb0d8aa1fc976cc7094

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 8f04d19eb40d29bd51b94991da2b51d2fa30e41db2b9ca2b43d920f1ec24a542
MD5 a2eea0dc20dfb619524dc5fe30c22304
BLAKE2b-256 48b593178eef2eebf718804dfa051e6e0c12b3eb58cd3be5df0eaf32dba6f396

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp312-none-win_amd64.whl.

File metadata

  • Download URL: bonn-1.0.7-cp312-none-win_amd64.whl
  • Upload date:
  • Size: 355.9 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for bonn-1.0.7-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 b6a642d67184c4b3557e963492911287cee4add2abba2c905032aa3357acddf3
MD5 2fb489544a79adc85cc44b1abf014ef6
BLAKE2b-256 54079872dc4fe6752b6a8e61a65d861a89efeb7fbdd4d1db4c9024be1712737d

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp312-none-win32.whl.

File metadata

  • Download URL: bonn-1.0.7-cp312-none-win32.whl
  • Upload date:
  • Size: 339.3 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for bonn-1.0.7-cp312-none-win32.whl
Algorithm Hash digest
SHA256 5723df62e9bd44021493066a916a476ed8ddfdca2aee56ce14c2a9d088604253
MD5 e2d9891b0d13ad7f17afe7d8673a7a4c
BLAKE2b-256 60243dca40bfa331d8ac7cbd31e66c9d0b3d0da5c94a1c09bd48a91060fedb0f

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 79ea41bb580ee755532d012c44430700828b391eaa2d9a313d7fdd1443ff5c56
MD5 c000671c1b810089e830152256672b61
BLAKE2b-256 009bcf4d7e9f2d1d8a6c4d1ee331b25c2a22f12c65304b7825c970474804ee2d

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 0c49f1b16b39231a993a2a1a53807865e96bbe7cf526adcff9f3d20eed993ff3
MD5 b8226db7e8ca356529666359b686072e
BLAKE2b-256 638fac808873b36db8a850c30d5c9b61b4e987bb64dac96df27ecb95a63670f9

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp311-none-win_amd64.whl.

File metadata

  • Download URL: bonn-1.0.7-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 355.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for bonn-1.0.7-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 6c2f61d9ff89fca0135844d3bed6c5d74186fd9ff1f8aa55edcb382a0b89ab66
MD5 b4631ffcae4fcc1e995044658ba51f18
BLAKE2b-256 af19779c5b2817dc482c1a8f0bedfb2121f3438808a714fbd0875b7af92035ab

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp311-none-win32.whl.

File metadata

  • Download URL: bonn-1.0.7-cp311-none-win32.whl
  • Upload date:
  • Size: 339.3 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for bonn-1.0.7-cp311-none-win32.whl
Algorithm Hash digest
SHA256 eee3c96708038b30dceaceb52a1f30ee0c5c8390553911a71ca04d4572d9917b
MD5 7a6b7fd000831e154a8a35539f1fb8de
BLAKE2b-256 d6c73bcb809e40740da9b040569d55c51ab5b4ec1245623dab39db1afd34931f

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 20a5fcfb595dfc267144ebbdd31d56649e33b0b1e2509e6496b0133c81d9e86f
MD5 a3eb4e70d4cba16ff2ffd8698d47a44e
BLAKE2b-256 471dc310f4dffbd8ef1046ad4c47497deaa30d3d774cd11aba97ca7a44c6463b

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 37d0039c3375d5899d9aacfe82c6cf3adfe15e87a4f02527e05f2ceb7ddae97d
MD5 15ce08037660d3adebed15bc161d2cf4
BLAKE2b-256 810ae8858a9f25ef03ebda311dc0bf8f20d51c33c739687ddb5742fdb87aa4d7

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 908439c79393ca1812f278d625b23a02260f47fd521c80d952d2a511589d1017
MD5 45846bec9c0cf6df8ba073d86bf1e9a4
BLAKE2b-256 47ee9d9438a356869e473e92ceef489824faf1ba18474234db21d64935fc0b58

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 d3ae5ae457c2a2df3e1e7cea02ffbb39ec4540804234178730e74c647554b652
MD5 f8c2074f00eed7bed434c282ff58c731
BLAKE2b-256 4ced1e2e43e9aebe7c9c938f809dd023ad7dbc39928233bc0690358609fa9663

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 80269b24693d96529f653bf01c9b701eb5badc615427e756a99588f40e758b97
MD5 aef1a9340c6460d4d46188de45c05882
BLAKE2b-256 57629a0f5f07a835becd57a276c14a569c1278aa29cfe963de33e1dab2e543ea

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 5751f6e963d9ff8b69e010db3df43591f358fb1591c9e4d0947147d76009d3de
MD5 1bfe5b5c3f7e20f886dcea4a6ac1fbac
BLAKE2b-256 28aa508867836323e23d82f2d3685de27658845002bbb6dfdb2cead4061698cf

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f609824938042b96119f4ce0ccba3bb927fc000ac0396a50146fdce40d0f34a6
MD5 943a539ce26367ae24a0928383219fc4
BLAKE2b-256 29e7e59f140dc2f4d4ce45509d0c8d8bdb87646c201af726f531048dac9bbe20

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 30c36a43de2b682eba1bbe8a8ac1da4db55f0d1f0760ba7fe1b7636b98638d23
MD5 1602dcef259f7493bb4419fd87707c4a
BLAKE2b-256 3552417baefb46fa49d3a290610d06526719dd7b5917462795788dbfaa3ed8fa

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp310-none-win_amd64.whl.

File metadata

  • Download URL: bonn-1.0.7-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 355.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for bonn-1.0.7-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 5f5f785af1e2a4edadc52aa41cb93783c110cbdf249972208163e1c500d6cfce
MD5 519c3134cc62af968b4be82046f0c2a5
BLAKE2b-256 d34f133dad19741497f795a1e4eaae177a8452c9524b1d013f520a06ed6d1275

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp310-none-win32.whl.

File metadata

  • Download URL: bonn-1.0.7-cp310-none-win32.whl
  • Upload date:
  • Size: 339.3 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for bonn-1.0.7-cp310-none-win32.whl
Algorithm Hash digest
SHA256 cb4456c046807c61e3ca423b17f16478120c03a33eff9150d0b93cbba6e65f3e
MD5 8b09623bb4ae3aa3f9e56417bec6a8f0
BLAKE2b-256 a6a31a21dcb52933914560d8b8b6ca2064ead3cf8fa03a6613800139300e0c6a

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 605725763ab3f30186c07e47b45009661cc9816faf114d1653a753d5cbb0020e
MD5 ebb80a3d491fef6e53edce4a346d28c5
BLAKE2b-256 08d028bf101fa016860e1c2a01bb37a5e31f0ba6eb22822dab6bfd4034cb6fcc

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 2cb780b53e1aa7aed9f96385cba3a70e5b20a61057e39dcbff748e4c341c945e
MD5 251fcdfb4614b59832e57ed20014e0d1
BLAKE2b-256 8afa6ef4278d614cbfe173a9bd7f5b41cb46727abe79694a0d5f82be4fa7c545

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 3237069012199a316a574251420a02e17f5dbdf7994952146465e0a5ec3ab4b2
MD5 e64594c455beee2a22b3fbe387f4e819
BLAKE2b-256 9d8f9307bbfd1fd5cbc0125dea91dbfa1b99f955eaad5095e4c403ccd5dd2dd5

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 db933370b98e0f2708bb4684b60f660e1d34039b089f8b1e63f58b3a597e86ae
MD5 29d879777e1b7861e725fd8a728c9540
BLAKE2b-256 e2eda10b41e2d176d784281892c47500a0803eb2e8e959315a030c360611004b

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b0b4987bc0d94207cddc3ef78cdb1f7d40ac203b4591d7ce968d53692433b354
MD5 80087e3004598238bd4c44068cd7b331
BLAKE2b-256 c65df55e982e85ab37451d677132b9ee6c033b6396a8d4496099d9e2f6a31186

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 f5f685f4eaf7919d33c7d09d4e14758985ba4fe66ba3c2921daed277154da710
MD5 1e994b22faea72ef475f8f9dce0836f0
BLAKE2b-256 dbf15f5a0c6b4da9c35460086701d1df4696cc8314c31e7b8709d750fa31e0d5

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 da8352601864940f6106206ff6ff367bd92cccd756b85cf32df4ed1f446e4516
MD5 95fb3723a5805717d4c49802ed5e3c31
BLAKE2b-256 4a4aa8b6c13c80bec1767c184aab43a4cc4cf6950d241647dc29228d98dd13be

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 ac4ee2139f0f8dcc3343af92f5a441f9084bcc9617255f7d128544adb83ed467
MD5 378950e184bd14c170ec32c10280ba90
BLAKE2b-256 37ecbb4181bb26c01bdb28f791e1b74b812bea472ea5c58587cb1ac95863bf33

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp39-none-win_amd64.whl.

File metadata

  • Download URL: bonn-1.0.7-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 356.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for bonn-1.0.7-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 45e977d87de2c4e1e61770d4a64c8b7c461cbd1577fafdfd506ffff80cab65a8
MD5 146e4696cfecde1207c54ebb5fb7b98d
BLAKE2b-256 a6495b640b38a059cf221c1134aa4818189e6e92c5c5769ab398edfa6fa7a23c

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp39-none-win32.whl.

File metadata

  • Download URL: bonn-1.0.7-cp39-none-win32.whl
  • Upload date:
  • Size: 338.4 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for bonn-1.0.7-cp39-none-win32.whl
Algorithm Hash digest
SHA256 a34f64f9f74a8387faf93d2088e97bb0c8828d595d4f731fd518177c807d07c6
MD5 b1b26a906a3b98f1a730b2caa817be3a
BLAKE2b-256 53b1ff3705ef46bf6755c1ab8a94257b7694860fa838755d30e70548417729dd

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f4244a48e8a5c54730dee3b45c33637aac0ed30eaf08e51d01040b5851bc60aa
MD5 9afd580cfb7b848802679d4dadfa218a
BLAKE2b-256 7ed9023957286171f54234a83c00cac6f367f0d3ced013c8fe4b088e9bd6a85f

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 77dca5388109822d3febe465cf77e7a6d7616c5021fcea8f7d7c93f7b7aa91b5
MD5 b3261550d6775880f8571017c2a3d096
BLAKE2b-256 3143014d254501545b8795deff6f40327cab54cc962517757d1af5a583b4cd7b

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 83f5a965560f4fb144e7e905a623d0a3b206140bdf7ac37a92cd3f788c1f4216
MD5 0a73bb71e340d487857f14e870f3e2fa
BLAKE2b-256 f372d103cb47d102b36ac145808be8e38164ae92d7bf9c2b70db743b4ffa2057

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 236968a6f1bb3c3117b638e5802e52b90988af92e071453b4e989ff4e80aa0ba
MD5 7cc84704ccb66d440f67af5a59fb7a29
BLAKE2b-256 1827a09bfd93c8a35a33387f50f6ff43c5c55f644446d9efe92d8066a8b6fe79

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d9088a89a9e50cdd6fb597f8c3776b81ee43eab01e9e10cb7335eee5e4f7c7da
MD5 99e6ff392cf51ff183120b9531ee2898
BLAKE2b-256 74e22aa086de869adac9a93849a47e58f38988b63989be8bd4d906ba0abdef57

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 e3a0afaf0044bfc2a589ba42912fd3814915174296baf35803226c89e821fb65
MD5 bedd73aad199b1f4dd7a6d56410086e3
BLAKE2b-256 823d8d6161a68af7e610ed6c8f3cb1ea97dac89a1b35a225da3405748356d344

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 19529cbdbd5d914713d06e2336fda054b0d0856f9d5b7270465b5b8803feb2a9
MD5 aa064c6329ae56b753a3c8fec9e5b876
BLAKE2b-256 4c1e2297e8748fea6fc862589eaf29710e9c3d28181abb55339c09fd8a03f441

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 a43395c291e3d408c81f3bfcd54256c58de290c29b1413af3a00fb331c30f90c
MD5 e20c83ce9bed4930771f6263e6caac68
BLAKE2b-256 c35239519412730bd94702facef6549d23bff9a32c208525e137f07fb6ddfbb6

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp38-none-win_amd64.whl.

File metadata

  • Download URL: bonn-1.0.7-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 356.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for bonn-1.0.7-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 48d760d31a97f3d8cf62d40ce517828a0a4eabd6a9b0d9f9649da8fa5d861a45
MD5 c07f80b7b44c9c3c99f2b1d1aa47d883
BLAKE2b-256 cb2c58a6a778b4263e3c8fcf62c4f8ab382fd7ba4402992f8d2551caa659a1f8

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp38-none-win32.whl.

File metadata

  • Download URL: bonn-1.0.7-cp38-none-win32.whl
  • Upload date:
  • Size: 339.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for bonn-1.0.7-cp38-none-win32.whl
Algorithm Hash digest
SHA256 a43b9058dcb1f59e20f96245a2dfa4fd43bfd449ca735880ed2dd1b5b3ed4986
MD5 1137645dda5205d9a0bd225e5757e5a2
BLAKE2b-256 29476e55630e99bd20795f672773cf2ec3ca522f311dd61163fa945e0ed92924

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f12f3516df19e66e560e616a62a0daf4be84b99e87faca790881cca18a21da1e
MD5 46a0e55dc78a2c4893fd834305e89f60
BLAKE2b-256 d3abd47fb75ba006e27e38e6f10173e7be27feb4d00b5b525956e6fc9126b60e

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 f07c1a7def1f9c35b1db31dded3d6e1df81bcaaa962897ca06ead68fd3e7463b
MD5 ea122c4fdf9f068ed226409814c864b7
BLAKE2b-256 85526c1d61c2dbbe4cabd5ab8db825f9b234313fd76d17900032637fa3856608

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f18f6070d92ee339f71b1f4a2c30cdbb67d190c29ed1c87f5867dfa2045e059a
MD5 542eddaf466dd715a9c6fb5145646420
BLAKE2b-256 81a9a0bcd64c03244e8754be24cc268f3b702c93d3ef7187ef9287ec61121eb5

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 73034914a9b2161a4a4ef0b31219439a064b613c52a33e409485e6c4ef0527d4
MD5 c5aff046a84886e4ea767519e1824f96
BLAKE2b-256 3babf96c94808311cb29e77062c1939d404f1c25eac9b3ebd685f5c69533787c

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 227c655d0ad20453c58c270db1764a48124c3a8ff5080f600511ca3285a97d4b
MD5 2c2ec01815fcf394b0d8da2ecc949080
BLAKE2b-256 81610acb0170e42785fb5de752868cb88f576538b5e2013c3c864dbff102a796

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 e1a2acee35e41d610aab3f3d371c46314c5fdae07b2c694f108f5f58c5aa6f7a
MD5 e7f3bc9fa29763d02df20e63ba485149
BLAKE2b-256 3f5288ba43378955a3482f34c357034c8d99a16039007e12bf5e49a15e6ef997

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 91ebdc662ca5ce108856160007c26dba194af5dd07caf3c1f915de02d6bcaf5c
MD5 8b1613edc93e85858e29a5bd59f6645c
BLAKE2b-256 8a32f13a9320c870a1dffa53961b83aa714be35efe12f3f5c0fdc4dc6de2ffa4

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 3dd1da9f669458441c03c99e882a29aa410b1c1877158843ccb5df0270ab73fa
MD5 505346341e833ad726b019afe722d334
BLAKE2b-256 cfcf9082c510b4debaaf572fb9b668fd4d6b4cb0269df689a2164f0bc7982c09

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 febef73f84a86dd6055f2ad8728cbf40f8b3056ecfe80cc28e919663f587c29e
MD5 18b13c991c60755b7e06aeb6fc958455
BLAKE2b-256 9e6de669fc1ca6b4a211f11bc42be5c4ef1f91dbb0d0cac85401bf18d81dd6c7

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 c99c3bb054ed1f70eb55b71eacaf6386df497ed0d020e4392e44105d74285122
MD5 5a02df6d4e53a6df25d46dfcd88cb995
BLAKE2b-256 a112f47dd2502ee3c316f2917aa217673c736036f08ecda3955e910f2961c443

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7c1e6e706a2dc0c9a1b8410eb7a50db8f9e732b31bab4e60992607374ea722c2
MD5 f44a4af7928022b902c1cbb2fdf4c68e
BLAKE2b-256 0ab12ebb5a5cbf1d32d47a887ec6e91e16cfdbed073fa85bbe4af41a62b3aa1c

See more details on using hashes here.

File details

Details for the file bonn-1.0.7-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for bonn-1.0.7-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 21a55166af1ad660cd26b27db22407a28f96c1b355f0a1a5863dc9abdd1191d8
MD5 d7f370ab11b0df566a036505360b1166
BLAKE2b-256 91c633824c47c09ec45efa472a23bf73ab32a58e1c0934a8e8f00359c0c70488

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page