Skip to main content

Created for ONS. Proof-of-concept mmap'd Rust word2vec implementation linked with category matching

Project description

bonn-py

NLP Category-Matching tools

A Rust microservice to match queries on the ONS Website to groupings in the ONS taxonomy

Getting started

Set up taxonomy.json

This should be adapted from the taxonomy.json.example and placed in the root directory.

Download or create embeddings

These are most simply sourced as pretrained fifu models, but can be dynamically generated using the embedded FinalFusion libraries.

To build wheels for distribution, use:

make

Configuration

Configuration

Environment variable Default Description
CATEGORY_API_HOST 0.0.0.0 Host
CATEGORY_API_PORT 28800 Port that the API is listening on
CATEGORY_API_DUMMY_RUN false Returns empty list for testing purposes
CATEGORY_API_DEBUG_LEVEL_FOR_DYNACONF "DEBUG" Verbosity of dynaconf internal logging
CATEGORY_API_ENVVAR_PREFIX_FOR_DYNACONF "CATEGORY_API" The prefix of which variables to be taken into dynaconf configuration
CATEGORY_API_FIFU_FILE "test_data/wiki.en.fifu" The location of the final fusion file
CATEGORY_API_THRESHOLD 0.4 Threshold of what's considered a low-scoring category
CATEGORY_API_CACHE_S3_BUCKET S3 for bucket for cache files in format "s3://"
--------core variables------------ --------- -----------
BONN_CACHE_TARGET "cache.json" Cache target
BONN_ELASTICSEARCH_HOST "http://localhost:9200" Elasticsearch host
BONN_REBUILD_CACHE true Should cache be rebuild
BONN_TAXONOMY_LOCATION "test_data/taxonomy.json" Location of taxonomy
BONN_ELASTICSEARCH_INDEX "ons1639492069322" Location of taxonomy
BONN_WEIGHTING__C 1 Word vectors based on the words in the category name
BONN_WEIGHTING__SC 2 Word vectors based on the words in the sub-categories name
BONN_WEIGHTING__SSC 2 Word vectors based on the words in the sub-sub-categories name
BONN_WEIGHTING__WC 6 Based on a bag of words found in the metadata of the datasets found in the categories
BONN_WEIGHTING__WSSC 8 Based on a bag of words found in the metadata of the datasets found in the sub-sub-categories

Manual building

Quick Local Setup

  1. setup .env file - $ cp .env.local .env

  2. make wheels

  3. make sure you've placed taxonomy.json in the root folder (This should be obtained from ONS).

  4. [TODO: genericize] you need an elasticsearch container forwarded to port:9200 (you can customize the port in .env) with a dump matching the appropriate schema https://gitlab.com/flaxandteal/onyx/dp-search-api in this readme you can checkout how to setup elasticsearch.

Install finalfusion utils

cd core
RUSTFLAGS="-C link-args=-lcblas -llapack" cargo install finalfusion-utils --features=opq

Optional: Convert the model to quantized fifu format

Note: if you try to use the full wiki bin you'll need about 128GB of RAM...

finalfusion quantize -f fasttext -q opq <fasttext.bin> fasttext.fifu.opq

Install deps and build

poetry shell
cd core
poetry install
cd ../api
poetry install
exit

Run

poetry run python -c "from bonn import FfModel; FfModel('test_data/wiki.en.fifu').eval('Hello')"

Create cache

You can create a cache with the following command:

poetry run python -m bonn.extract

This assumes that the correct environment variables for the NLP model, taxonomy and Elasticsearch are set.

Algorithm

The following requirements were identified:

  • Fast response to live requests
  • Low running resource requirements, as far as possible
  • Ability to limit risk of unintended bias in results, and making results explainable
  • Minimal needed preprocessing of data (at least for first version)
  • Non-invasive - ensuring that the system can enhance existing work by ONS teams, with minimal changes required to incorporate
  • Runs effectively and reproducibly in ONS workflows

We found that the most effective approach was to use the standard Wikipedia unstructured word2vec model as the ML basis.

This has an additional advantage that we have been able to prototype incorporating other language category matching into the algorithm, although further work is required, including manual review by native speakers and initial results suggest that a larger language corpus would be required for training.

Using finalfusion libraries in Rust enables mmapping for memory efficiency.

Category Vectors

A bag of words is formed, to make a vector for the category - a weighted average of the terms, according to the attribute contributing it:

Grouping Score basis
Category (top-level) Literal words within title
Subcategory (second-level) Literal words within title
Subsubcategory (third-level) Literal words within title
Related words across whole category Common thematic words across all datasets within the category
Related words across subsubcategory Common thematic words across all datasets within the subsubcategory

To build a weighted bag of words, the system finds thematically-distinctive words occurring in dataset titles and descriptions present in the categories, according to the taxonomy. The "thematic distinctiveness" of words in a dataset description is defined by exceeding a similarity threshold to terms in the category title.

These can then be compared to search queries word-by-word, obtaining a score for each taxonomy entry, for a given phrase.

Scoring Adjustment

In addition to the direct cosine similarity of these vectors, we:

  • remove any stopwords from the search scoring, with certain additional words that should not affect the category matching (“data”, “statistics”, “measure(s)”)
  • apply an overall significance boost for a category, using the magnitude of the average word vector for its bag as a proxy for how “significant” it is that it matches a query phrase (so categories that match overly frequently, such as “population”, are slightly deprioritized)
  • enhance or reduce contribution from each of the words in the query based on their commonality across categories.

To do the last, a global count of (lemmatized) words appearing in dataset descriptions/titles across all categories is made, and common terms are deprioritized within the bag according to an exponential decay function - this allows us to rely more heavily on words that strongly signpost a category (such as “education” or “school”) without being confounded by words many categories contain (such as “price” or “economic”).

Once per-category scores for a search phrase are obtained, we filter them based on:

  • appearance thresholds, to ensure we only return matches over a minimal viable score;
  • a signal-to-noise ratio filter (SNR) that returns a small number of notably high-scoring categories or a larger group of less distinguishable top scorers, according to a supplied SNR ratio.

License

Prepared by Flax & Teal Limited for ONS Alpha project. Copyright © 2022, Office for National Statistics (https://www.ons.gov.uk)

Released under MIT license, see LICENSE for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bonn-1.0.6.tar.gz (44.9 kB view details)

Uploaded Source

Built Distributions

bonn-1.0.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (516.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

bonn-1.0.6-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (582.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

bonn-1.0.6-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (569.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

bonn-1.0.6-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (499.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

bonn-1.0.6-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (503.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

bonn-1.0.6-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (542.7 kB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

bonn-1.0.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (516.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

bonn-1.0.6-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (582.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

bonn-1.0.6-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (568.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

bonn-1.0.6-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (500.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

bonn-1.0.6-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (503.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

bonn-1.0.6-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (542.5 kB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

bonn-1.0.6-cp312-none-win_amd64.whl (350.2 kB view details)

Uploaded CPython 3.12 Windows x86-64

bonn-1.0.6-cp312-none-win32.whl (333.5 kB view details)

Uploaded CPython 3.12 Windows x86

bonn-1.0.6-cp312-cp312-macosx_11_0_arm64.whl (445.3 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

bonn-1.0.6-cp312-cp312-macosx_10_12_x86_64.whl (474.5 kB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

bonn-1.0.6-cp311-none-win_amd64.whl (350.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

bonn-1.0.6-cp311-none-win32.whl (333.5 kB view details)

Uploaded CPython 3.11 Windows x86

bonn-1.0.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (516.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

bonn-1.0.6-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (582.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

bonn-1.0.6-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (569.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

bonn-1.0.6-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (499.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARMv7l

bonn-1.0.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (504.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

bonn-1.0.6-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (544.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

bonn-1.0.6-cp311-cp311-macosx_11_0_arm64.whl (445.1 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

bonn-1.0.6-cp311-cp311-macosx_10_12_x86_64.whl (474.8 kB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

bonn-1.0.6-cp310-none-win_amd64.whl (350.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

bonn-1.0.6-cp310-none-win32.whl (333.5 kB view details)

Uploaded CPython 3.10 Windows x86

bonn-1.0.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (516.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

bonn-1.0.6-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (582.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

bonn-1.0.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (569.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

bonn-1.0.6-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (499.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARMv7l

bonn-1.0.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (504.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

bonn-1.0.6-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (544.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

bonn-1.0.6-cp310-cp310-macosx_11_0_arm64.whl (445.1 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

bonn-1.0.6-cp310-cp310-macosx_10_12_x86_64.whl (474.8 kB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

bonn-1.0.6-cp39-none-win_amd64.whl (350.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

bonn-1.0.6-cp39-none-win32.whl (332.6 kB view details)

Uploaded CPython 3.9 Windows x86

bonn-1.0.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (516.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

bonn-1.0.6-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (582.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

bonn-1.0.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (569.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

bonn-1.0.6-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (499.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARMv7l

bonn-1.0.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (504.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

bonn-1.0.6-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (542.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

bonn-1.0.6-cp39-cp39-macosx_11_0_arm64.whl (445.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

bonn-1.0.6-cp39-cp39-macosx_10_12_x86_64.whl (474.7 kB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

bonn-1.0.6-cp38-none-win_amd64.whl (350.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

bonn-1.0.6-cp38-none-win32.whl (333.6 kB view details)

Uploaded CPython 3.8 Windows x86

bonn-1.0.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (516.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

bonn-1.0.6-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (583.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

bonn-1.0.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (569.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

bonn-1.0.6-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (500.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARMv7l

bonn-1.0.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (504.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

bonn-1.0.6-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (542.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

bonn-1.0.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (516.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

bonn-1.0.6-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (583.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

bonn-1.0.6-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (569.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

bonn-1.0.6-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (500.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARMv7l

bonn-1.0.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (504.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

bonn-1.0.6-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (544.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

File details

Details for the file bonn-1.0.6.tar.gz.

File metadata

  • Download URL: bonn-1.0.6.tar.gz
  • Upload date:
  • Size: 44.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for bonn-1.0.6.tar.gz
Algorithm Hash digest
SHA256 74fd120d8e2e5e36e80eb216d7127bb162509166331e8e47d7fbe408c4c45af7
MD5 44121d301c5c7ec4d60d600eeb9432a4
BLAKE2b-256 51a9eb3ead945c25a3ee4df3dc8cc46fc3b5f7286df9866e24f805cd64c1f3b4

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fb845bdbe3a59bdbdcb2cc5dd549cefafb1589db456330d0ee41241ae5c3b5e4
MD5 67c70c8c161db39ba7c94a46bec42e34
BLAKE2b-256 90dc10d295ab29b171ca3d1bd8fc159b1a8e05f63c29ad2f2658207b20f57dcb

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 884df7d75cc8c77fcd30152a374bfcd9c7885f16b0a05ca1f8e19d095ee74f59
MD5 afd9ae63981e0179e504f409162df7e4
BLAKE2b-256 5d5a4d74b19dbd724bc4bc9672e12d1c1e0bbc3f98b2cc246a09c1a3444a7da6

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 37eedd36dece0127be243fd11abdc4576d4046f1e8b6715e2f402fa04f97ba7d
MD5 be9239d6705be81ce7c12389eb0fbdf1
BLAKE2b-256 ac8131d4961c2599b08bab3dca718baa0b1cba9b07ef2f4216bf7cdfb2c9ed46

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 1a55084c4a99f87f66f7ef708efde6846cc3b781e646d80dcd5177633dc66e37
MD5 cf17a6fe0e832b876c5bf83eaefb9b74
BLAKE2b-256 562b33ef8809409135ceca8a182e5ea6120184a2693dfa523c13f8e9c09ec388

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2cdad03b5a61236d0fab0ce38a7de1fa18da408c2145fac58545f934e4100b4b
MD5 9895dd774ad238ea62397cff6a6120c8
BLAKE2b-256 52e821352f6cf2d608e905a907e9be9eaf266f293ba325bd27c9f442ab8a5595

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 e9cd219d910ffae4f58561250b2c6295939891d55185bd0af4738d2acd604493
MD5 07cbb606b29d2a2e34249979c1cd434e
BLAKE2b-256 9ae54b79e07ffde35a22516731b63582be3b60259658161f3c3f2e955f9122de

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 65f2fcd6b6501527467f7f6407ef61c3daca5ef4301422fc883bc4058fa58b68
MD5 a3a471028087b0da443ba1d66ae0ae7e
BLAKE2b-256 339cdf11343e3128779d5672bfdebe07faaf7e6e1d330b991dc5318a737b2ad4

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 dc98632e7436f1380844f5547d5b5f60c7ef7c80735427976afa0cb5f591f3a2
MD5 c2cd92568ef16177aaba659dfbfb0bb4
BLAKE2b-256 6727bb847d1fa237221f666aad562ff9962ca05128705756b6a4df0f8a7e8f51

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 61cceb8bdbe060199cc4a094ce6998a296825c0f9f6441aa21b88ce81ad21c0c
MD5 1ef70e354632fcccd1abcd47c8e541aa
BLAKE2b-256 43e5e1d9ca9d6c28d1ea3822b17522dafed3f8c484d2b508665c04ce6b7d8dcd

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 03b0176746807d903efe42194e422be5806afce04417fbbf72cf8b83663c53c8
MD5 6a79fabd9383e052adcf090f0c7cadd4
BLAKE2b-256 26863963cceae24d26ea021532af737b6d67b2e4e7fd918007529531a33049be

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 862a8d8b6f1c8b68573cd16e54f894e8c4500d36286ad082da385deba5791cff
MD5 024097288a27a3821977a59c9168252f
BLAKE2b-256 6353ff7eab0d8d8f111a267aa845c8c77aea6e6ea902d6985ca38f4708108845

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 96018cc7e97ddbf8df3b95a53fde06a13ed094e2c0faad7fcf22d087c44b8aa1
MD5 95d9b6a53dfcfbe774fe44f91cc2b815
BLAKE2b-256 f89f3a5b542c3c898c48985ee281e538f185e210ccda1b0d79f0edb97d3a64b8

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp312-none-win_amd64.whl.

File metadata

  • Download URL: bonn-1.0.6-cp312-none-win_amd64.whl
  • Upload date:
  • Size: 350.2 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for bonn-1.0.6-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 3ec532da337beb1c633bfe5ae172265b0238179a52d9f7570c4dbc7ae92a86bf
MD5 21d287163fff7e8e527a96b57a3f4e11
BLAKE2b-256 ea18f8bf2f0d20609520052518d611ba6d382054f48bd446f02d614c3f9387a5

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp312-none-win32.whl.

File metadata

  • Download URL: bonn-1.0.6-cp312-none-win32.whl
  • Upload date:
  • Size: 333.5 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for bonn-1.0.6-cp312-none-win32.whl
Algorithm Hash digest
SHA256 60ff60988f706dbb226b1f9f51c295ff3cfe4181037c2f1dd5481681dc0d7913
MD5 b89fb32a2d6cc02454ab606fb95b07ef
BLAKE2b-256 b510393e6ecd4dd15898ffaae1eb61a41ecad7e293a2c08699deca939b6d0787

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1f397cb054ab746ff440cb901e97608e788726d064261325cdf600caf9243e68
MD5 5858033ea65ecab9136b37300599c750
BLAKE2b-256 d4ef8ab297b6e5b0e4fe3a0a5b40c734ab0853c649fb6e570159226fe4bbd787

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 fc2bf9b0a1a8ca8c80d3bd9972b0bf0f44d3c234a4b9ed5135825e18b02081e8
MD5 9a02000660c92432a3fa54e42b782405
BLAKE2b-256 49def26b197f1f627051df607c92f186525f4c26bb1ddb0d0f5e416243a694c4

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp311-none-win_amd64.whl.

File metadata

  • Download URL: bonn-1.0.6-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 350.1 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for bonn-1.0.6-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 901012c584655a2f0a7135b3a804f17e7687dfa1a0bbf84381960265fc9b92c7
MD5 74273d43f42b3e17ec1b6c829d3ff731
BLAKE2b-256 daa2c08e9d09dac39102c0bf567d07730f6ee44aea583616cde9c9b63b315ca6

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp311-none-win32.whl.

File metadata

  • Download URL: bonn-1.0.6-cp311-none-win32.whl
  • Upload date:
  • Size: 333.5 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for bonn-1.0.6-cp311-none-win32.whl
Algorithm Hash digest
SHA256 fc90824ca9cbd40f8eec36d386866377a51f005a9829cf6383c320eaa2b73c72
MD5 1ef1054ef043061c5bc1dfec3b6d420a
BLAKE2b-256 7b56a3a244a048605671f81d16d6880a43ca96d70ca174443ce5dfd2d76845a5

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e64c93713903a1643476b11e676c7e9ec92df1c2d0d12c2852f9288acf886d02
MD5 58674e839cdf3ac8533fb184547a99b2
BLAKE2b-256 e4ae724543aa9cb4d0ee6dbcd31a095a04bb8a12d179b57f1579f8ef6176f225

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 6309cacf4681474dcadfefb3882236ae266a0a3ab50f8909b1a4a9d308fede67
MD5 00deace65e41d5cd1e06be62632279bd
BLAKE2b-256 955cb844346216319a9eb776a04c481b141cdda81d4e8b890869f4a8fa6589cb

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e8eae8a9d0a23c36d202cc0807f587b54f72e28e8b837a69bc996954d1b76b6b
MD5 9ddebbe536fd9d640b2fef07574eb1a3
BLAKE2b-256 94854ba9863a25e3627b78c5c25ed2ec0eae30cb2120a544f64df78414160851

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 2efd0d4e555890056d9784a5ecccbedcd47eb0e1e01b05ddc003d9d91c6c9d95
MD5 3d161b1fa6d8aa63ef444cdf72fe9cce
BLAKE2b-256 24a2f3c68addf2f80f16b881ffb553f0795850481721220a4faae41d76187fd9

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f6efea831ceec7a5b325b5fce6ad9199653dd44daea74de0c44daaea23ff6f98
MD5 9c1eb5b4dcec3bc448803ad90004ba49
BLAKE2b-256 e6ce8ee3b7c38a09ce1e2649535e9b90e9b7a7fd934b9d99af7acfe42e61d28e

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 edda4db8ef117e248b2853bbe2c9a0f487dcc0180f8cddb80ea5274eb390ec07
MD5 cd95b731baf7b21aaeac6bb01cd12da5
BLAKE2b-256 e769f3674e82bf2e76de62f7a7b71fd4f9ddee9e0710695365bc02d1738dc699

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 273d73912126e92b1f7beda0a4bc0a5cd817a4248606b1d3b8fa7dacb0bf9f7b
MD5 7c2291e1f7a3b55dc2f514f9982e00dd
BLAKE2b-256 2e793bcf6c24c8f7705db381d1674ac19e31b7cc7c9afcb601aead9c9322dcd9

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 caec395a315176ad5a6d47a4cbe95b42e1ac159fc2b94c8c40dffd449dbc94ea
MD5 1de8f291b01f8cd7c6548702e21bb27e
BLAKE2b-256 f431c561b5acf8aed6a332fd74e666b38698c2062fc8cbdedcb89711e63c3c99

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp310-none-win_amd64.whl.

File metadata

  • Download URL: bonn-1.0.6-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 350.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for bonn-1.0.6-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 687fe5d1b6c019ea9aacaa0b1486c42e992b22ef7a499ef6ec97feb55923c3ad
MD5 7e8b138b3dd0f7bc787ffe7cb16da202
BLAKE2b-256 488569a5b97af186cec8ed544b7e0471b721aa40ebf41880a1abceb925f3896a

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp310-none-win32.whl.

File metadata

  • Download URL: bonn-1.0.6-cp310-none-win32.whl
  • Upload date:
  • Size: 333.5 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for bonn-1.0.6-cp310-none-win32.whl
Algorithm Hash digest
SHA256 d6462429fab90a87d9655ae3e3a89b0df7238df57d4f22b6dfdf4d9c3516c3df
MD5 0654243ca0a150dfb515d9931632bcd9
BLAKE2b-256 cf6c098f8ad0991238f3f7ca670acc95feea97906e237ba387b07c188ac1412b

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a97b9fd15213627fc388fa447f561951627f6b602eede7486f95c300496d2517
MD5 c32fc6091554d1bb6cc0cd78c4a87adc
BLAKE2b-256 c366f0661bf9600f7a8e5b7427df9ff2b0ff7142e9bb39d958673fed5d91f580

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 be360ed263e5952c221cffee1bfab3a9529e40e86e901da3387184e003ea986b
MD5 df6b07dc312cd07722d767a07add9c1a
BLAKE2b-256 d4bd813f31897e7d6804ecb8a177775de290a22df04106df01f72716f6742d18

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 4f0abe9cfc49c246413f879561d68fda719e4c1f56cc15b15f9e8ab8ec684b2c
MD5 9b131875c1b4c8383c335d2b598d2de5
BLAKE2b-256 35516a0323239af73ed727f4a3af2ab538d9fe5249556a7cdc5856ecc83017a9

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 b2f93de70015fac27c510060ec3db6b3901e66da352d2eae02eec9c377e0e244
MD5 394e279c52a381da7949a2133cc9ebac
BLAKE2b-256 66813a5cfa4bec1ecc4c0b4da110f0eca48351788b6474bda35958601ab6301f

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 91f16f1f6a4af789b0f91c9f5c31aa7f89f4c9d0e98e22579daceed7252f84e2
MD5 04f32c45157179e972ad8d2671bc93bf
BLAKE2b-256 b12a44f9b3f3f8b88e6a461f7dbf48cd474d0f5d4bccd2ada5d6175f257bd373

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 5ff0e2b905f931b46a64542abca7cae5659fdceb882c3c0582ead4c86e7fbc20
MD5 471b672a7b332114fbaee8b9eb6f930b
BLAKE2b-256 c947d2493649d0e49fc3b07c5658d969b09ce17e48edb6123810846a65a5cf68

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f201aee0e874429c90b1adf8e427ac25edc53b32c6064543ca59edc762c39434
MD5 8714d6b9e8d46409c3cc658dd3bc51fd
BLAKE2b-256 840d306eb3cf1e5a34b09ed0ce983868a9d3c2349700c3562907791976fa69e9

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 1613713b178dad30fd873a158edb69faa00357dd24dded4caf0dedcb97c741c1
MD5 e55072f40bd6f54311e7d33b27aa34cf
BLAKE2b-256 7044725020d48929f20df1734e5d5263cd7f1e5d19486ccf2a01ba93e0cb6eb8

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp39-none-win_amd64.whl.

File metadata

  • Download URL: bonn-1.0.6-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 350.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for bonn-1.0.6-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 6b34a1bf701b14c63dd9429d8fc6d50b74883341f04a27a056ee3f6c7924bb2e
MD5 de8f7270b6902e0c35a0b78a45475b21
BLAKE2b-256 562fbc38e12791ccb326cee299abed2e9e8e98c0da32fb48ed46c0387b826b57

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp39-none-win32.whl.

File metadata

  • Download URL: bonn-1.0.6-cp39-none-win32.whl
  • Upload date:
  • Size: 332.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for bonn-1.0.6-cp39-none-win32.whl
Algorithm Hash digest
SHA256 24cd8fb0bcb24b96b4c96a371e24beca41ff9bc8fa7db2723eb82acba6583e55
MD5 c64ee6bad5c8358193499e8ab8866177
BLAKE2b-256 ad7056b756422225fe0733473f81176893c0db12fb94184ff6190199c30b5761

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 32a2b6ad5d6357cc291ae894ab87d2206be405284c47602e3e64cabe82b72642
MD5 d0342d4605a706a86e912f87ae669efc
BLAKE2b-256 a16067880fe6e74f64d1236ec93eacf4c6a88a2cc195dcf748f24ed8311c3bea

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 53893e82421edda98799b495009f200add8d6ee1cc546374789ab657298b1835
MD5 9b7ac144065823984fbf998e406098f0
BLAKE2b-256 11ce52ed378b91592c00e4fc9a39b8cdba6ef5e3e048cd99bd1acff69e82484f

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 5b3c949129af5936880f9c29a2bca5859db5656f7938cfb412195ea4bd5e01c1
MD5 43d201e835b1f1c58dbfbabcdbc2f672
BLAKE2b-256 df4f512207eb0469989c8c98691f534ad2e41afbd00f2364721cf314c42af6a1

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 1f7878d7bf615c0f68af28b2bea1243d6647cd067d5f5b02885b252bcf5cd828
MD5 629219fa516ca0bd5509dc248cb4a9eb
BLAKE2b-256 79dd9818054a545a9b90fb8ebe0a02cf1c677590a675a7d898a75864c36ca4a9

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 157f7d1df8b44192e13d6049a58b72e50db441838e73e18a3ca3242d0dec17a1
MD5 bd6e84f15cf8397ed4e39ec8a4e828fa
BLAKE2b-256 a89fc320d2a22b6f1c023500ba056c54097ecbffa042f4e2b10624fb0783872e

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 babd986f6c7c405ae86a4887da669beb3de3fe520217da8826b12fabfccdab4f
MD5 00b573766723d0868a171765f1e30726
BLAKE2b-256 7d8b6c00fb472f0c35d5fbde993f5b710754544ae7037757b6539b4753e6ae89

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e458241ebf39dfbf7bd612dc06bbcc3927b19f4bd4dfe725346ecc80392de407
MD5 4f62fb5d973669811882e281a50885cb
BLAKE2b-256 00721b242c14a8dc0eba9a3d583e4372f1aba78965d5c7ac3aa2c3378fb7f99d

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 e9b5025899ae1adc221ef728bed05c9c7697cdb88847986dbeec94fb237db7c9
MD5 372aec3650fc29fcf862b3bd9efaf490
BLAKE2b-256 112aa5e3fa51cffbf4cc6edd0ad14c4f727d60b5c94dc285164b8e488fe36edd

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp38-none-win_amd64.whl.

File metadata

  • Download URL: bonn-1.0.6-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 350.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for bonn-1.0.6-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 a50be6376a6e8e187f3c1547a403fe248d4804b0c9164651303172ec8d3f134c
MD5 4e82fb88f4e5a668b0483fce46dee5ca
BLAKE2b-256 4add26789948e53bbf28eddc66b0ae264409afea7ba2fd78657a113bcd47e293

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp38-none-win32.whl.

File metadata

  • Download URL: bonn-1.0.6-cp38-none-win32.whl
  • Upload date:
  • Size: 333.6 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for bonn-1.0.6-cp38-none-win32.whl
Algorithm Hash digest
SHA256 1bab4d7ddb40c056255536ab74eb0100d3e7c0bba20568bf9e15f03688280379
MD5 7894958e57b9aa8045b1ce887d6b85aa
BLAKE2b-256 a40dfebb7521ec3539cf5287224a950feef448497bfd83a1c4b14ebb242ba222

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 290d0b4b258050dd4aa70130b0bed999a5fc2eda47acb63962c92a71228edce9
MD5 f1186bd6caf6c918255e93c040a2b310
BLAKE2b-256 9da40c85272fb4c56ee5c88bd0b54c1b9ceec7f17cde6493724f79bb5186f58e

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 ec95c186c6e7510204b626bc8ae58a34dfbf4994fccccb314656f908d32b30f6
MD5 3ebf03810602d11bd2ba4aad0a360828
BLAKE2b-256 b75b560b540e66edbb47a5b1ea087ff8ec7002ebbdb89b115d6bdb7f7841743e

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 32485d1fd18d03777b912f5eed6c6ba7d37ca053166897e9102ea5cc35f4feb1
MD5 d4811f9e3869c0ef22012887840b364f
BLAKE2b-256 2a5182a40644b7eed2ed46a5a19e8fc23e800c3ab65a6f1e04496593a4ad3072

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 2cbc99f778f41ba2d3a4d1ef4833aaa3e713375ab99d232ec1a901b510fb7d58
MD5 136e6942fc7e539727b5b18bfe7d3bfe
BLAKE2b-256 68432ea1ccb830d4c86c9b018cb8435782bfe467735b8a54a5ac52ff5a874ddd

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 85b35ca894a32a287bebae000768829d61f230e58be278275eafa7742c29d98b
MD5 6623b551760b4230cbe1346dd39cf99e
BLAKE2b-256 8b10e355244884c2271441fcc3827ec98a619a4bd5f4670a9d8da0c26071a4bc

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 5df763a277a3d0f016c2f4c3a40c73dd09b0b08f78935d0e18c86702e5170fa6
MD5 d27424494c13666106dbf4d7101dbf6f
BLAKE2b-256 0ac6ef6c4908d4345d749aad334aa716e74ce284d5bb7c724001416b9a8a073c

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4f3163ef408ef177dac38d408ca463d47898964c9d82b3771f1b94dc6f1c1ebe
MD5 64da52f3cf5ad29e472c122901bf3e06
BLAKE2b-256 c4f1f66ead279a52e4ef62f3f32d20ed489ca47f88a33bc1118553dd1eec923d

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 4153801090bca69c2ca2c01c1bdff6c692a1dd693bb55129f3023e94b8f45972
MD5 9022bbc905f5d3ac2a15b8906d35feb2
BLAKE2b-256 360910567e66ed67b7136e82863095e95971c7a988c19bef06a1ca5f4faf7c01

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 b09ba35935d36d0d78daffd96cd40a1308d4fe45b5289a9d475c9111639f9d1f
MD5 08879d28f39bbc7121f9caaa130fa1c1
BLAKE2b-256 27c61c145298506ad1b4ebcf62dca8d35611fdf42d4e926c720234bb9c17f3f8

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 23e59744419b4048c0d817768c5ec1c6990e745df18927d6fb81f09cf3ed135c
MD5 90204ce3a5f0896227098d9b2671258f
BLAKE2b-256 21d308fded97b7b938ce9018ec69b89a2d1d32777dc1f4fb2074e7430d74e2b1

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5017151e936f1d0a815a8a4b44f6a4357ca6f6e84dc9b58d732bf8eae089e2ae
MD5 7270c75c72286dd285dbf7eb7d83b656
BLAKE2b-256 150075f8189c3372ada74b8d3f89d99e45dfdb76bbd7b298924073b108d4c99f

See more details on using hashes here.

File details

Details for the file bonn-1.0.6-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for bonn-1.0.6-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 4ed3a6eec61c6acd1d20b349b62b0f2de1cfff54ec1e20800fb3a926ec17e701
MD5 a3e0c415efa9e7ba12eaf4c620f1fbcd
BLAKE2b-256 59bcb6b0eccec4916bd5b744e13bbac53ac7669dc886c258873ae02c3f3612c7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page