Skip to main content

Module for Python 3 to access LDAP directory servers.

Project description

This is a module for handling LDAP operations in Python. Uses libldap2 on Unix platforms and WinLDAP on Microsoft Windows. LDAP entries are mapped to a special Python case-insensitive dictionary, tracking the changes of the dictionary to modify the entry on the server easily.

Support only Python 3.3 or newer, and LDAPv3.

Requirements for building

  • python3.3-dev or newer

  • libldap2-dev

  • libsasl2-dev

Features

  • Uses LDAP libraries (OpenLDAP and WinLDAP) written in C for faster processing.

  • Simple pythonic design.

  • Implements an own dictionary-like object for mapping LDAP entries that makes easier to add and modify them.

  • Works with various asynchronous library (like asyncio, gevent).

Example

import bonsai

client = bonsai.LDAPClient("ldap://localhost")
client.set_credentials("SIMPLE", ("cn=admin,dc=local", "secret"))
conn = client.connect()
res = conn.search("ou=nerdherd,dc=local", 2, "(cn=chuck)")
res[0]['givenname'] = "Charles"
res[0]['sn'] = "Carmichael"
res[0].modify()

Documentation

Documentation is available online with a simple tutorial.

Changelog

Currently, you can read the changelog here.

Contribution

Any contributions and advices are welcome. Please report any issues at the GitHub page.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bonsai-0.8.0.tar.gz (71.8 kB view details)

Uploaded Source

Built Distributions

bonsai-0.8.0.win-amd64-py3.5.msi (139.3 kB view details)

Uploaded Source

bonsai-0.8.0.win-amd64-py3.4.msi (139.3 kB view details)

Uploaded Source

bonsai-0.8.0.win32-py3.5.msi (135.2 kB view details)

Uploaded Source

bonsai-0.8.0.win32-py3.4.msi (131.1 kB view details)

Uploaded Source

bonsai-0.8.0-cp35-none-win_amd64.whl (50.9 kB view details)

Uploaded CPython 3.5 Windows x86-64

bonsai-0.8.0-cp35-none-win32.whl (44.1 kB view details)

Uploaded CPython 3.5 Windows x86

bonsai-0.8.0-cp34-none-win_amd64.whl (47.9 kB view details)

Uploaded CPython 3.4 Windows x86-64

bonsai-0.8.0-cp34-none-win32.whl (42.8 kB view details)

Uploaded CPython 3.4 Windows x86

File details

Details for the file bonsai-0.8.0.tar.gz.

File metadata

  • Download URL: bonsai-0.8.0.tar.gz
  • Upload date:
  • Size: 71.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for bonsai-0.8.0.tar.gz
Algorithm Hash digest
SHA256 c6005605f0f24c09a8bbb94ddd26814653ef22a1aaf03b145b22129906170958
MD5 f7989eee6282fac4df25f2cf55549fbe
BLAKE2b-256 5a0b178353bf496c29145cbf125b266de5e9f577d4f1e6c382567c9e1392c969

See more details on using hashes here.

File details

Details for the file bonsai-0.8.0.win-amd64-py3.5.msi.

File metadata

File hashes

Hashes for bonsai-0.8.0.win-amd64-py3.5.msi
Algorithm Hash digest
SHA256 4d6b5cf22651217ead4d100c56f7bef9118efcf0a0e90610ceecacefaf24c989
MD5 5106098d90c6f9a1792478662be9b384
BLAKE2b-256 7cfab4572d4d456f5082fb47d13161bccf1eee5adf5c0ccde0d79338e14e4ab1

See more details on using hashes here.

File details

Details for the file bonsai-0.8.0.win-amd64-py3.4.msi.

File metadata

File hashes

Hashes for bonsai-0.8.0.win-amd64-py3.4.msi
Algorithm Hash digest
SHA256 11214a1caa78ac95e634dedbe6f20f60ea8cdd03dcb343e4c870ed8ca573c459
MD5 861ba782892a7845a252fcc825c66ac0
BLAKE2b-256 08bfb7dba6222246f4303761ce76532df246e81bb184782b442fc2dcc90751a2

See more details on using hashes here.

File details

Details for the file bonsai-0.8.0.win32-py3.5.msi.

File metadata

File hashes

Hashes for bonsai-0.8.0.win32-py3.5.msi
Algorithm Hash digest
SHA256 1f3d8c11572988fd0c78ddab82a46050829d4619c83e7bb2cd84f515ab266b8a
MD5 e52415dd8776883685f7b00941db1bba
BLAKE2b-256 9a9cf90694ae27ab7a1043d02e619620f45b8e4dcc3ef15e0318b237847122d0

See more details on using hashes here.

File details

Details for the file bonsai-0.8.0.win32-py3.4.msi.

File metadata

File hashes

Hashes for bonsai-0.8.0.win32-py3.4.msi
Algorithm Hash digest
SHA256 90983e7a25c2ec3e112bd0a2dffc0ff9d74f7068165fe012cd923567bb453d6c
MD5 4ea4e9c35b53436846ce8b89eb15f92a
BLAKE2b-256 4766e700745dd2d6f470f0200bbbfcdacb4b167f7c9a5f9ed26afeb881dedc0b

See more details on using hashes here.

File details

Details for the file bonsai-0.8.0-cp35-none-win_amd64.whl.

File metadata

File hashes

Hashes for bonsai-0.8.0-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 efbf7bce171bd9829730091686e66a6fe9bb70fd3a1a7d57fb7713a53d972517
MD5 95c5074e27b3a66c5511ddcf1e79ed3f
BLAKE2b-256 a9147164883fadef98c36f78f913040b72ccabad15832522c01f194c12610b72

See more details on using hashes here.

File details

Details for the file bonsai-0.8.0-cp35-none-win32.whl.

File metadata

File hashes

Hashes for bonsai-0.8.0-cp35-none-win32.whl
Algorithm Hash digest
SHA256 cd6ba52f4acbabe9ac10cb39fb9895b018ffc2686be7bd4a2c2f21d6dc268c28
MD5 8d33906e8334f1abcde44a205ad9cf35
BLAKE2b-256 6d868a6ddeb40501057258f627c5eba8785af35dd4c3fa22337b22536ffcb970

See more details on using hashes here.

File details

Details for the file bonsai-0.8.0-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for bonsai-0.8.0-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 5a1d1667fa4f05f65ee8a4885b09bce576fbacf0f0bba711e8e55332f5f4dfb8
MD5 e48d4384fc8c67e906d6cd47486bc268
BLAKE2b-256 1b98ff4d2a6dd4661cb6c2bb73ec4295e01ecefdd1e1a3aa574fb7767af4f636

See more details on using hashes here.

File details

Details for the file bonsai-0.8.0-cp34-none-win32.whl.

File metadata

File hashes

Hashes for bonsai-0.8.0-cp34-none-win32.whl
Algorithm Hash digest
SHA256 847a9256a69cd4f483e206dee65d00b5aa40709334238fd4807884bdb6273cae
MD5 9975c3a0a1e7532722ac91728ada77fd
BLAKE2b-256 64f6dc56893c7294bfb29ef2a7be2bf9af42045bc17ab7a7fc92a32fd58790ce

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page