Booltest: Polynomial randomness tester
Project description
Booltest
Boolean PRNG tester - analysing statistical properties of PRNGs.
Randomness tester based on our paper published at Secrypt 2017
How does it work?
Booltest generates a set of boolean functions, computes the expected result distribution when evaluated on truly random data and compares this to the evaluation on the data being tested.
Pip installation
Booltest is available via pip:
pip install booltest
Local installation
From the local dir:
pip install --upgrade --find-links=. .
The engine
Booltest does the heavy lifting with the native python extension bitarray_ph4
Bitarray operations are performed effectively using fast operations implemented in C.
Experiments
First launch
The following commands generate two different files, random and zero-filled. Both are tested, the difference between files should be evident.
dd if=/dev/urandom of=random-file.bin bs=1024 count=$((1024*10)) dd if=/dev/zero of=zero-file.bin bs=1024 count=$((1024*10)) booltest --degree 2 --block 256 --top 128 --tv $((1024*1024*10)) --rounds 0 random-file.bin booltest --degree 2 --block 256 --top 128 --tv $((1024*1024*10)) --rounds 0 zero-file.bin
Java random
Analyze output of the java.util.Random, use only polynomials in the specified file. Analyze 100 MB of data:
booltest --degree 2 --block 512 --top 128 --tv $((1024*1024*100)) --rounds 0 \ --poly-file data/polynomials/polynomials-randjava_seed0.txt \ randjava_seed0.bin
Reference statistics
In order to test reference statistics of the test we computed polynomial tests on input vectors generated by AES-CTR(SHA256(random_32bit())) - considered as random data source. The randverif.py was used.
The first hypothesis to verify is the following: under null hypothesis (uniform input data), zscore test is input data size invariant. In other words, the zscore result of the test is not influenced by amount of data processed.
To verify the first hypothesis we analyzed 1000 different test vectors of sizes 1 and 10 MB for various settings (block \in {128, 256} x deg \in {1, 2, 3} x comb_deg \in {1, 2, 3}) and compared results. The test was performed with assets/test-aes-size.sh.
Second test is to determine reference zscore value for random data. For this we performed 100 different tests on 10 MB AES input vectors in all test combinations: block \in {128, 256, 384, 512} x deg \in {1, 2, 3} x comb_deg \in {1, 2, 3}.
Aura testbed
Testbed = battery of functions (e.g., ESTREAM, SHA3 candidates, …) tested with various polynomial parameters (e.g., block \in {128, 256, 384, 512} x deg \in {1, 2, 3} x comb_deg \in {1, 2, 3}).
EAcirc generator is invoked during the test to generate output from battery functions. If switch --data-dir is used testbed.py will try to look up output there first.
In order to start EACirc generator you may need to compile it on the machine you want to test on. Instructions for compilation are on the bottom of the page. In order to invoke the generator you need to setup env
module add mpc-0.8.2 module add gmp-4.3.2 module add mpfr-3.0.0 module add cmake-3.6.2 export PATH=~/local/gcc-5.2.0/bin:$PATH export LD_LIBRARY_PATH=~/local/gcc-5.2.0/lib:$LD_LIBRARY_PATH export LD_LIBRARY_PATH=~/local/gcc-5.2.0/lib64:$LD_LIBRARY_PATH
In order to start testbed.py there is a script assets/aura-para.sh. It performs the env setup, prepares directories, spawns multiple testing processes.
Parallelization is done in a simple way. Each test has an index. This order is randomized and each process from the batch takes the job that belongs to him (e.g. 10 processes, process #5 takes each 5th job). If the ordering is not favorable for in some way (e.g., one process is getting too much heavy jobs - deg3, combdeg 3) just change the seed of the test randomizer.
Result of each test is stored in a separate file.
Standard functions -> batteries
The goal of this experiment is to assess standard test batteries (e.g., NIST, Dieharder, TestU01) how well they perform on the battery of round reduced functions (e.g., ESTREAM, SHA3 candidates, …)
For the testing we use Randomness Testing Toolkit (RTT) from the EACirc project. The testbatteries.py prepares data for functions to test and the main bash script that submits tests to RTT.
python booltest/testbatteries.py --email ph4r05@gmail.com --threads 3 \ --generator-path ~/eacirc/generator/generator \ --result-dir ~/_nni/home/ph4r05/testdata/ \ --data-dir ~/_nni/home/ph4r05/testdata/ \ --script-data /home/ph4r05/testdata \ --matrix-size 1 10 100 1000
RandC
Test found distinguishers on RandC for 1000 different random seeds:
python booltest/randverif.py --test-randc \ --block 384 --deg 2 \ --tv $((1024*1024*10)) --rounds 0 --tests 1000 \ --poly-file polynomials-randc-linux.txt \ > ~/output.txt
In order to generate CSV from the output:
python csvgen.py output.txt > data.csv
Java tests - version
openjdk version "1.8.0_121" OpenJDK Runtime Environment (build 1.8.0_121-8u121-b13-0ubuntu1.16.04.2-b13) OpenJDK 64-Bit Server VM (build 25.121-b13, mixed mode) Ubuntu 16.04.1 LTS (Xenial Xerus)
Egenerator speed benchmark
Table summarizes function & time needed to generate 10 MB of data.
Function |
Round |
Time (sec) |
---|---|---|
AES |
4 |
2.12984800339 |
ARIRANG |
4 |
9.43074584007 |
AURORA |
5 |
0.810596942902 |
BLAKE |
3 |
0.839290142059 |
Cheetah |
7 |
0.924134969711 |
CubeHash |
3 |
36.8423719406 |
DCH |
3 |
3.34326887131 |
DECIM |
7 |
51.946573019 |
DynamicSHA |
9 |
1.33032679558 |
DynamicSHA2 |
14 |
1.14816212654 |
ECHO |
4 |
2.15773296356 |
Fubuki |
4 |
1.81450080872 |
Grain |
4 |
67.9190270901 |
Grostl |
5 |
2.10276603699 |
Hamsi |
3 |
7.09616398811 |
Hermes |
3 |
1.46782112122 |
JH |
8 |
3.51690793037 |
Keccak |
4 |
1.31340193748 |
Lesamnta |
5 |
2.08995699883 |
LEX |
5 |
0.789785861969 |
Luffa |
8 |
2.70372700691 |
MD6 |
11 |
2.13406395912 |
Salsa20 |
4 |
0.845487833023 |
SIMD |
3 |
7.54037189484 |
Tangle |
25 |
1.43553209305 |
TEA |
8 |
0.981395959854 |
TSC-4 |
14 |
8.33323192596 |
Twister |
9 |
1.38356399536 |
Installation
Scipy installation with pip
pip install pyopenssl pip install pycrypto pip install git+https://github.com/scipy/scipy.git pip install --upgrade --find-links=. .
Virtual environment
It is usually recommended to create a new python virtual environment for the project:
virtualenv ~/pyenv source ~/pyenv/bin/activate pip install --upgrade pip pip install --upgrade --find-links=. .
Aura / Aisa on FI MU
module add cmake-3.6.2 module add gcc-4.8.2
Python 2.7.14
Booltest does not work with lower Python version. Use pyenv to install a new Python version. It internally downloads Python sources and installs it to ~/.pyenv.
git clone https://github.com/pyenv/pyenv.git ~/.pyenv echo 'export PYENV_ROOT="$HOME/.pyenv"' >> ~/.bashrc echo 'export PATH="$PYENV_ROOT/bin:$PATH"' >> ~/.bashrc echo 'eval "$(pyenv init -)"' >> ~/.bashrc exec $SHELL pyenv install 2.7.14 pyenv local 2.7.14
GCC 5.2
Installing a new GCC with C++ 11 support. http://bakeronit.com/2015/11/04/install_gcc/
wget http://ftp.gnu.org/gnu/gcc/gcc-5.2.0/gcc-5.2.0.tar.bz2 tar -xjvf gcc-5.2.0.tar.bz2 module add mpc-0.8.2 module add gmp-4.3.2 module add mpfr-3.0.0 mkdir -p ~/local/gcc-5.2.0 cd local mkdir gcc-build # objdir cd gcc-build ../../gcc-5.2.0/configure --prefix=~/local/gcc-5.2.0/ --enable-languages=c,c++,fortran,go --disable-multilib make -j4 # spend a long time make install # Add either to ~/.bashrc or just invoke on shell export PATH=~/local/gcc-5.2.0/bin:$PATH export LD_LIBRARY_PATH=~/local/gcc-5.2.0/lib:$LD_LIBRARY_PATH export LD_LIBRARY_PATH=~/local/gcc-5.2.0/lib64:$LD_LIBRARY_PATH
Compiling EACirc generator on Aura/Aisa
module add mpc-0.8.2 module add gmp-4.3.2 module add mpfr-3.0.0 module add cmake-3.6.2 export PATH=~/local/gcc-5.2.0/bin:$PATH export LD_LIBRARY_PATH=~/local/gcc-5.2.0/lib:$LD_LIBRARY_PATH export LD_LIBRARY_PATH=~/local/gcc-5.2.0/lib64:$LD_LIBRARY_PATH cd ~/eacirc mkdir -p build && cd build CC=gcc CXX=g++ cmake .. make
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file booltest-0.2.0.tar.gz
.
File metadata
- Download URL: booltest-0.2.0.tar.gz
- Upload date:
- Size: 75.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f731a1448c423b6728bb75be805eb1fc2bc998cbe57f0f544e961d1df2c7fc3e |
|
MD5 | da4e8b59f3d2d7360035fb15d2080de4 |
|
BLAKE2b-256 | cbd8869234853c8a54c9071b5cdcaab983af8940c5c5ae3fa68921a667c031df |
File details
Details for the file booltest-0.2.0-py2.py3-none-any.whl
.
File metadata
- Download URL: booltest-0.2.0-py2.py3-none-any.whl
- Upload date:
- Size: 73.4 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | db1bd96543829f14b97e89a69d2431544fe52e6e23973f87f9186cd71fc052d6 |
|
MD5 | 90ca2a5e2daffa8ae09085622c41b538 |
|
BLAKE2b-256 | 20a00c196143bfde739a44ff9632fb9d5ae4156800e0fcc059104de8ee2d6e8a |