High level framework for starting Deep Learning projects
Project description
<a href="http://remicadene.com/bootstrap"><img src="https://github.com/Cadene/bootstrap.pytorch/blob/master/docs/source/_static/img/bootstrap-logo-dark.png" width="50%"/></a>
<a href="https://travis-ci.org/Cadene/bootstrap.pytorch"><img src="https://api.travis-ci.org/Cadene/bootstrap.pytorch.svg?branch=master"/></a>
`Bootstrap` is a high-level framework for starting deep learning projects.
It aims at accelerating research projects and prototyping by providing a powerful workflow focused on your dataset and model only.
And it is:
- Scalable
- Modular
- Shareable
- Extendable
- Uncomplicated
- Built for reproducibility
- Easy to log and plot anything
It's not a wrapper over pytorch, it's a powerful extension.
## Quick tour
To display parsed options from the yaml file:
```
python -m bootstrap.run
-o mnist/options/sgd.yaml
-h
```
To run an experiment (training + evaluation):
```
python -m bootstrap.run
-o mnist/options/sgd.yaml
```
Running an experiment will create 4 files:
- [options.yaml](https://github.com/Cadene/bootstrap.pytorch/blob/master/logs/mnist/sgd/options.yaml) contains the options used for the experiment,
- [logs.txt](https://github.com/Cadene/bootstrap.pytorch/blob/master/logs/mnist/sgd/logs.txt) contains all the information given to the logger.
- [logs.json](https://github.com/Cadene/bootstrap.pytorch/blob/master/logs/mnist/sgd/logs.json) contains the following data: train_epoch.loss, train_batch.loss, eval_epoch.accuracy_top1, etc.
- <a href="http://htmlpreview.github.io/?https://raw.githubusercontent.com/Cadene/bootstrap.pytorch/master/logs/mnist/sgd/view.html">view.html</a> contains training and evaluation curves with javascript utilities (plotly).
To save the next experiment in a specific directory:
```
python -m bootstrap.run
-o mnist/options/sgd.yaml
--exp.dir logs/mnist/custom
```
To reload an experiment:
```
python -m bootstrap.run
-o logs/mnist/cuda/options.yaml
--exp.resume last
```
## Documentation
The package reference is available on the [documentation website](http://remicadene.com/bootstrap).
It also contains some notes:
- [Installation](http://remicadene.com/bootstrap/#installation)
- [Concepts](http://remicadene.com/bootstrap/concepts.html)
- [Quickstart](http://remicadene.com/bootstrap/quickstart.html)
- [Directories](http://remicadene.com/bootstrap/directories.html)
- [Examples](http://remicadene.com/bootstrap/examples.html)
## Poster
<a href="http://remicadene.com/bootstrap/_static/img/bootstrap_poster.pdf"><img src="http://remicadene.com/bootstrap/_static/img/bootstrap_poster_mini.png" width="20%"/></a>
<a href="https://travis-ci.org/Cadene/bootstrap.pytorch"><img src="https://api.travis-ci.org/Cadene/bootstrap.pytorch.svg?branch=master"/></a>
`Bootstrap` is a high-level framework for starting deep learning projects.
It aims at accelerating research projects and prototyping by providing a powerful workflow focused on your dataset and model only.
And it is:
- Scalable
- Modular
- Shareable
- Extendable
- Uncomplicated
- Built for reproducibility
- Easy to log and plot anything
It's not a wrapper over pytorch, it's a powerful extension.
## Quick tour
To display parsed options from the yaml file:
```
python -m bootstrap.run
-o mnist/options/sgd.yaml
-h
```
To run an experiment (training + evaluation):
```
python -m bootstrap.run
-o mnist/options/sgd.yaml
```
Running an experiment will create 4 files:
- [options.yaml](https://github.com/Cadene/bootstrap.pytorch/blob/master/logs/mnist/sgd/options.yaml) contains the options used for the experiment,
- [logs.txt](https://github.com/Cadene/bootstrap.pytorch/blob/master/logs/mnist/sgd/logs.txt) contains all the information given to the logger.
- [logs.json](https://github.com/Cadene/bootstrap.pytorch/blob/master/logs/mnist/sgd/logs.json) contains the following data: train_epoch.loss, train_batch.loss, eval_epoch.accuracy_top1, etc.
- <a href="http://htmlpreview.github.io/?https://raw.githubusercontent.com/Cadene/bootstrap.pytorch/master/logs/mnist/sgd/view.html">view.html</a> contains training and evaluation curves with javascript utilities (plotly).
To save the next experiment in a specific directory:
```
python -m bootstrap.run
-o mnist/options/sgd.yaml
--exp.dir logs/mnist/custom
```
To reload an experiment:
```
python -m bootstrap.run
-o logs/mnist/cuda/options.yaml
--exp.resume last
```
## Documentation
The package reference is available on the [documentation website](http://remicadene.com/bootstrap).
It also contains some notes:
- [Installation](http://remicadene.com/bootstrap/#installation)
- [Concepts](http://remicadene.com/bootstrap/concepts.html)
- [Quickstart](http://remicadene.com/bootstrap/quickstart.html)
- [Directories](http://remicadene.com/bootstrap/directories.html)
- [Examples](http://remicadene.com/bootstrap/examples.html)
## Poster
<a href="http://remicadene.com/bootstrap/_static/img/bootstrap_poster.pdf"><img src="http://remicadene.com/bootstrap/_static/img/bootstrap_poster_mini.png" width="20%"/></a>
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
bootstrap.pytorch-0.0.11.tar.gz
(28.9 kB
view details)
Built Distribution
File details
Details for the file bootstrap.pytorch-0.0.11.tar.gz
.
File metadata
- Download URL: bootstrap.pytorch-0.0.11.tar.gz
- Upload date:
- Size: 28.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.14.2 setuptools/37.0.0 requests-toolbelt/0.8.0 tqdm/4.14.0 CPython/3.5.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8e98350f9d7a0fb3ac5654551e8997d707df822dc929f40714ab07e818cb368c |
|
MD5 | 6d345b1b231b31344c7a123eb0623478 |
|
BLAKE2b-256 | 31bf76f4a2145ee3ba70786b279d154865f6a3c803e39617e61514f722fbdc60 |
File details
Details for the file bootstrap.pytorch-0.0.11-py3-none-any.whl
.
File metadata
- Download URL: bootstrap.pytorch-0.0.11-py3-none-any.whl
- Upload date:
- Size: 35.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.14.2 setuptools/37.0.0 requests-toolbelt/0.8.0 tqdm/4.14.0 CPython/3.5.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 31a2bf215c8a3dac5e044b58b92b09d0d97ccc6f25cc425bd23c75c2e54833e7 |
|
MD5 | d24d3624e90e43131a20539b84acccb0 |
|
BLAKE2b-256 | 06eabc0cde91d59f99750c231f203542dd072d4c1c0db709746f4e59503e85d8 |