Skip to main content

High level framework for starting Deep Learning projects

Project description

<a href="http://remicadene.com/bootstrap"><img src="https://github.com/Cadene/bootstrap.pytorch/blob/master/docs/source/_static/img/bootstrap-logo-dark.png" width="50%"/></a>

<a href="https://travis-ci.org/Cadene/bootstrap.pytorch"><img src="https://api.travis-ci.org/Cadene/bootstrap.pytorch.svg?branch=master"/></a>

`Bootstrap` is a high-level framework for starting deep learning projects.
It aims at accelerating research projects and prototyping by providing a powerful workflow focused on your dataset and model only.

And it is:

- Scalable
- Modular
- Shareable
- Extendable
- Uncomplicated
- Built for reproducibility
- Easy to log and plot anything

It's not a wrapper over pytorch, it's a powerful extension.

## Quick tour

To display parsed options from the yaml file:
```
python -m bootstrap.run
-o mnist/options/sgd.yaml
-h
```

To run an experiment (training + evaluation):
```
python -m bootstrap.run
-o mnist/options/sgd.yaml
```

Running an experiment will create 4 files:

- [options.yaml](https://github.com/Cadene/bootstrap.pytorch/blob/master/logs/mnist/sgd/options.yaml) contains the options used for the experiment,
- [logs.txt](https://github.com/Cadene/bootstrap.pytorch/blob/master/logs/mnist/sgd/logs.txt) contains all the information given to the logger.
- [logs.json](https://github.com/Cadene/bootstrap.pytorch/blob/master/logs/mnist/sgd/logs.json) contains the following data: train_epoch.loss, train_batch.loss, eval_epoch.accuracy_top1, etc.
- <a href="http://htmlpreview.github.io/?https://raw.githubusercontent.com/Cadene/bootstrap.pytorch/master/logs/mnist/sgd/view.html">view.html</a> contains training and evaluation curves with javascript utilities (plotly).


To save the next experiment in a specific directory:
```
python -m bootstrap.run
-o mnist/options/sgd.yaml
--exp.dir logs/mnist/custom
```

To reload an experiment:
```
python -m bootstrap.run
-o logs/mnist/cuda/options.yaml
--exp.resume last
```


## Documentation

The package reference is available on the [documentation website](http://remicadene.com/bootstrap).

It also contains some notes:

- [Installation](http://remicadene.com/bootstrap/#installation)
- [Concepts](http://remicadene.com/bootstrap/concepts.html)
- [Quickstart](http://remicadene.com/bootstrap/quickstart.html)
- [Directories](http://remicadene.com/bootstrap/directories.html)
- [Examples](http://remicadene.com/bootstrap/examples.html)

## Poster

<a href="http://remicadene.com/bootstrap/_static/img/bootstrap_poster.pdf"><img src="http://remicadene.com/bootstrap/_static/img/bootstrap_poster_mini.png" width="20%"/></a>


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bootstrap.pytorch-0.0.11.tar.gz (28.9 kB view details)

Uploaded Source

Built Distribution

bootstrap.pytorch-0.0.11-py3-none-any.whl (35.3 kB view details)

Uploaded Python 3

File details

Details for the file bootstrap.pytorch-0.0.11.tar.gz.

File metadata

  • Download URL: bootstrap.pytorch-0.0.11.tar.gz
  • Upload date:
  • Size: 28.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.14.2 setuptools/37.0.0 requests-toolbelt/0.8.0 tqdm/4.14.0 CPython/3.5.2

File hashes

Hashes for bootstrap.pytorch-0.0.11.tar.gz
Algorithm Hash digest
SHA256 8e98350f9d7a0fb3ac5654551e8997d707df822dc929f40714ab07e818cb368c
MD5 6d345b1b231b31344c7a123eb0623478
BLAKE2b-256 31bf76f4a2145ee3ba70786b279d154865f6a3c803e39617e61514f722fbdc60

See more details on using hashes here.

File details

Details for the file bootstrap.pytorch-0.0.11-py3-none-any.whl.

File metadata

  • Download URL: bootstrap.pytorch-0.0.11-py3-none-any.whl
  • Upload date:
  • Size: 35.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.14.2 setuptools/37.0.0 requests-toolbelt/0.8.0 tqdm/4.14.0 CPython/3.5.2

File hashes

Hashes for bootstrap.pytorch-0.0.11-py3-none-any.whl
Algorithm Hash digest
SHA256 31a2bf215c8a3dac5e044b58b92b09d0d97ccc6f25cc425bd23c75c2e54833e7
MD5 d24d3624e90e43131a20539b84acccb0
BLAKE2b-256 06eabc0cde91d59f99750c231f203542dd072d4c1c0db709746f4e59503e85d8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page