Skip to main content

High level framework for starting Deep Learning projects

Project description

<a href="http://remicadene.com/bootstrap"><img src="https://github.com/Cadene/bootstrap.pytorch/blob/master/docs/source/_static/img/bootstrap-logo-dark.png" width="50%"/></a>

<a href="https://travis-ci.org/Cadene/bootstrap.pytorch"><img src="https://api.travis-ci.org/Cadene/bootstrap.pytorch.svg?branch=master"/></a>

`Bootstrap` is a high-level framework for starting deep learning projects.
It aims at accelerating research projects and prototyping by providing a powerful workflow focused on your dataset and model only.

And it is:

- Scalable
- Modular
- Shareable
- Extendable
- Uncomplicated
- Built for reproducibility
- Easy to log and plot anything

It's not a wrapper over pytorch, it's a powerful extension.

## Quick tour

To run an experiment (training + evaluation):
```
python -m bootstrap.run
-o myproject/options/sgd.yaml
```

To display parsed options from the yaml file:
```
python -m bootstrap.run
-o myproject/options/sgd.yaml
-h
```

Running an experiment will create 4 files, here is an example with [mnist](https://github.com/Cadene/mnist.bootstrap.pytorch):

- [options.yaml](https://github.com/Cadene/bootstrap.pytorch/blob/master/docs/assets/logs/mnist/sgd/options.yaml) contains the options used for the experiment,
- [logs.txt](https://github.com/Cadene/bootstrap.pytorch/blob/master/docs/assets/logs/mnist/sgd/logs.txt) contains all the information given to the logger.
- [logs.json](https://github.com/Cadene/bootstrap.pytorch/blob/master/docs/assets/logs/mnist/sgd/logs.json) contains the following data: train_epoch.loss, train_batch.loss, eval_epoch.accuracy_top1, etc.
- <a href="http://htmlpreview.github.io/?https://raw.githubusercontent.com/Cadene/bootstrap.pytorch/master/docs/assets/logs/mnist/sgd/view.html">view.html</a> contains training and evaluation curves with javascript utilities (plotly).


To save the next experiment in a specific directory:
```
python -m bootstrap.run
-o myproject/options/sgd.yaml
--exp.dir logs/custom
```

To reload an experiment:
```
python -m bootstrap.run
-o logs/custom/options.yaml
--exp.resume last
```


## Documentation

The package reference is available on the [documentation website](http://remicadene.com/bootstrap).

It also contains some notes:

- [Installation](http://remicadene.com/bootstrap/#installation)
- [Concepts](http://remicadene.com/bootstrap/concepts.html)
- [Quickstart](http://remicadene.com/bootstrap/quickstart.html)
- [Directories](http://remicadene.com/bootstrap/directories.html)
- [Examples](http://remicadene.com/bootstrap/examples.html)

## Official project modules

- [mnist.bootstrap.pytorch](https://github.com/Cadene/mnist.bootstrap.pytorch) is a useful example for starting a quick project with bootstrap
- [vision.bootstrap.pytorch](https://github.com/Cadene/vision.bootstrap.pytorch) contains utilities to train image classifier, object detector, etc. on usual datasets like imagenet, cifar10, cifar100, coco, visual genome, etc.
- [recipe1m.bootstrap.pytorch](https://github.com/Cadene/recipe1m.bootstrap.pytorch) is a project for image-text retrieval related to the Recip1M dataset developped in the context of a [SIGIR18 paper](https://arxiv.org/abs/1804.11146).
- [block.bootstrap.pytorch](https://github.com/Cadene/block.bootstrap.pytorch) is a project focused on fusion modules related to the VQA 2.0, TDIUC and VRD datasets developped in the context of a [AAAI19 paper](http://remicadene.com/pdfs/paper_aaai2019.pdf).

## Poster

<a href="http://remicadene.com/bootstrap/_static/img/bootstrap_poster.pdf"><img src="http://remicadene.com/bootstrap/_static/img/bootstrap_poster_mini.png" width="20%"/></a>


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

bootstrap.pytorch-0.0.12-py3-none-any.whl (38.5 kB view details)

Uploaded Python 3

File details

Details for the file bootstrap.pytorch-0.0.12-py3-none-any.whl.

File metadata

  • Download URL: bootstrap.pytorch-0.0.12-py3-none-any.whl
  • Upload date:
  • Size: 38.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.14.2 setuptools/37.0.0 requests-toolbelt/0.8.0 tqdm/4.14.0 CPython/3.5.2

File hashes

Hashes for bootstrap.pytorch-0.0.12-py3-none-any.whl
Algorithm Hash digest
SHA256 c8f59277e1cb51c8986578c645a594bd5bd1be561654ebcf82daca40f8dde6d8
MD5 a2983350738728c12abeb69329cc41b4
BLAKE2b-256 c483dd80cc30bf8f91bf7a0f015b9331d6f86946993c71969b99c3f3988e4bbb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page