Skip to main content

High level framework for starting Deep Learning projects

Project description

<a href="http://remicadene.com/bootstrap"><img src="https://github.com/Cadene/bootstrap.pytorch/blob/master/docs/source/_static/img/bootstrap-logo-dark.png" width="50%"/></a>

<a href="https://travis-ci.org/Cadene/bootstrap.pytorch"><img src="https://api.travis-ci.org/Cadene/bootstrap.pytorch.svg?branch=master"/></a>

`Bootstrap` is a high-level framework for starting deep learning projects.
It aims at accelerating research projects and prototyping by providing a powerful workflow focused on your dataset and model only.

And it is:

- Scalable
- Modular
- Shareable
- Extendable
- Uncomplicated
- Built for reproducibility
- Easy to log and plot anything

It's not a wrapper over pytorch, it's a powerful extension.

## Quick tour

To run an experiment (training + evaluation):
```
python -m bootstrap.run
-o myproject/options/sgd.yaml
```

To display parsed options from the yaml file:
```
python -m bootstrap.run
-o myproject/options/sgd.yaml
-h
```

Running an experiment will create 4 files, here is an example with [mnist](https://github.com/Cadene/mnist.bootstrap.pytorch):

- [options.yaml](https://github.com/Cadene/bootstrap.pytorch/blob/master/docs/assets/logs/mnist/sgd/options.yaml) contains the options used for the experiment,
- [logs.txt](https://github.com/Cadene/bootstrap.pytorch/blob/master/docs/assets/logs/mnist/sgd/logs.txt) contains all the information given to the logger.
- [logs.json](https://github.com/Cadene/bootstrap.pytorch/blob/master/docs/assets/logs/mnist/sgd/logs.json) contains the following data: train_epoch.loss, train_batch.loss, eval_epoch.accuracy_top1, etc.
- <a href="http://htmlpreview.github.io/?https://raw.githubusercontent.com/Cadene/bootstrap.pytorch/master/docs/assets/logs/mnist/sgd/view.html">view.html</a> contains training and evaluation curves with javascript utilities (plotly).


To save the next experiment in a specific directory:
```
python -m bootstrap.run
-o myproject/options/sgd.yaml
--exp.dir logs/custom
```

To reload an experiment:
```
python -m bootstrap.run
-o logs/custom/options.yaml
--exp.resume last
```


## Documentation

The package reference is available on the [documentation website](http://remicadene.com/bootstrap).

It also contains some notes:

- [Installation](http://remicadene.com/bootstrap/#installation)
- [Concepts](http://remicadene.com/bootstrap/concepts.html)
- [Quickstart](http://remicadene.com/bootstrap/quickstart.html)
- [Directories](http://remicadene.com/bootstrap/directories.html)
- [Examples](http://remicadene.com/bootstrap/examples.html)

## Official project modules

- [mnist.bootstrap.pytorch](https://github.com/Cadene/mnist.bootstrap.pytorch) is a useful example for starting a quick project with bootstrap
- [vision.bootstrap.pytorch](https://github.com/Cadene/vision.bootstrap.pytorch) contains utilities to train image classifier, object detector, etc. on usual datasets like imagenet, cifar10, cifar100, coco, visual genome, etc.
- [recipe1m.bootstrap.pytorch](https://github.com/Cadene/recipe1m.bootstrap.pytorch) is a project for image-text retrieval related to the Recip1M dataset developped in the context of a [SIGIR18 paper](https://arxiv.org/abs/1804.11146).
- [block.bootstrap.pytorch](https://github.com/Cadene/block.bootstrap.pytorch) is a project focused on fusion modules related to the VQA 2.0, TDIUC and VRD datasets developped in the context of a [AAAI19 paper](http://remicadene.com/pdfs/paper_aaai2019.pdf).

## Poster

<a href="http://remicadene.com/bootstrap/_static/img/bootstrap_poster.pdf"><img src="http://remicadene.com/bootstrap/_static/img/bootstrap_poster_mini.png" width="20%"/></a>

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bootstrap.pytorch-0.0.13.tar.gz (29.3 kB view details)

Uploaded Source

File details

Details for the file bootstrap.pytorch-0.0.13.tar.gz.

File metadata

  • Download URL: bootstrap.pytorch-0.0.13.tar.gz
  • Upload date:
  • Size: 29.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.14.2 setuptools/37.0.0 requests-toolbelt/0.8.0 tqdm/4.14.0 CPython/3.5.2

File hashes

Hashes for bootstrap.pytorch-0.0.13.tar.gz
Algorithm Hash digest
SHA256 223b7fd28a7c52e8da0e4aeccca96938b2d01a14273d7facb172837455269408
MD5 da0866372050c2671bfe651b5a5604e8
BLAKE2b-256 5968d6c15d0619d7f7664696a9451620a23ea50864fa4844111b5d1910992f7e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page