Fast NumPy array functions written in Cython
Project description
Introduction
Bottlechest is a fork of bottleneck (https://github.com/kwgoodman/bottleneck), specialized for use in Orange (https://github.com/biolab/orange3).
Moving window functions, several other functions and all optimization of 3d arrays are removed to reduce the size of the library. New functions are added as needed.
NumPy/SciPy |
median, nanmedian, rankdata, ss, nansum, nanmin, nanmax, nanmean, nanstd, nanargmin, nanargmax |
Functions |
nanrankdata, nanvar, replace, nn, anynan, allnan, nanequal |
For other documentation, including a simple example and comprehensive set of benchmarks, refer to the original project.
License
Bottlechest is distributed under a Simplified BSD license. Parts of Bottleneck, NumPy, Scipy, numpydoc and bottleneck, all of which have BSD licenses, are included in Bottlechest. See the LICENSE file, which is distributed with Bottlechest, for details.
Install
Requirements:
Bottlechest |
Python 2.6, 2.7, 3.2; NumPy 1.8 |
Unit tests |
nose |
Compile |
gcc or MinGW |
Optional |
SciPy 0.8, 0.9, 0.10 (portions of benchmark) |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Hashes for Bottlechest-0.7.1-cp35-none-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1fe9f86de359cad86c4703ca0e833022d0de26b2922a9391c564e934829718ef |
|
MD5 | c6d5be34f78346b5c2215d475a89f3c6 |
|
BLAKE2b-256 | 0c9fe61de4bf9751b871a7ec1bbe9f49acc903d3457b68b5c205528c7f52546b |
Hashes for Bottlechest-0.7.1-cp35-none-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c49abc80213d909b97b04f0364b4c3e32c1b7275b0c5f10a89f733c0e7f53b20 |
|
MD5 | dffcfef0fbeaff9fa3981ff88e4320be |
|
BLAKE2b-256 | eaf78dc9a47a340d056cd13b329eb25709fefc9de443a0fafe878396470c027d |
Hashes for Bottlechest-0.7.1-cp35-cp35m-macosx_10_11_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c86cace23cf9d5d0799caa851b5d6c207306bd3a5ce01998fed6517b4935f37b |
|
MD5 | 923b63861f650152596f80c10d88742e |
|
BLAKE2b-256 | 4c7ddcdd987134e4944f2ae84bb576550287d07d04d9e42585b33346e3cef5bb |
Hashes for Bottlechest-0.7.1-cp35-cp35m-macosx_10_6_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0b863f3657c704b215fcddbe2d637b7e20fe2896a82a99087e5a93789c1085a4 |
|
MD5 | 1b44b38e8c3358b604f4d89162166b91 |
|
BLAKE2b-256 | 21469cf090f0e2e82d2c167efad43713e1e6e9279af33a2f387e9ad9994684c4 |
Hashes for Bottlechest-0.7.1-cp34-none-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c64aeb858653105c7bf0ed5c93ae884d47869fa412557bdb72df806039755d95 |
|
MD5 | cc72e83af870d9ff9694b6d979e8fe32 |
|
BLAKE2b-256 | dda91c68357843623d97f8abc636438a784c07f806cf7ce3b56a2ae1a60af7a8 |
Hashes for Bottlechest-0.7.1-cp34-none-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2c56235c6b53b9d95b1b014d9eeb588b3bdad5a7cc54993e42501f7f2db6f638 |
|
MD5 | 57cd3ddead71d1e696ae721bd9e0aa02 |
|
BLAKE2b-256 | 2f99e7a8a158a1382e19c94413387ee9bc8ea5fe177b94906e4e5ca9cbf4a981 |
Hashes for Bottlechest-0.7.1-cp34-cp34m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c8ae42269024235d2370a3ec897fe97e566a210b148ba01c856987dda3fef3f4 |
|
MD5 | 0f076458a81d99b76d3453941d8c7765 |
|
BLAKE2b-256 | 39fddb0980ce641ce24fb5f9e094e30a457a61dee5725f4a2111851044adc1c0 |
Hashes for Bottlechest-0.7.1-cp34-cp34m-macosx_10_6_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ccd58dd3e5f3fbb70bc8def12d59b93b326d4e871f623c0ee32302ac25d6f0fc |
|
MD5 | 9fddf99af342154d38fa178e33f3b221 |
|
BLAKE2b-256 | ab42b2228464053021d4996822bc9e41689f6d77d9fac78ffa7eafd10690adf3 |