Skip to main content

Fast NumPy array functions written in C

Project description

Bottleneck is a collection of fast NumPy array functions written in C.

Let’s give it a try. Create a NumPy array:

>>> import numpy as np
>>> a = np.array([1, 2, np.nan, 4, 5])

Find the nanmean:

>>> import bottleneck as bn
>>> bn.nanmean(a)
3.0

Moving window mean:

>>> bn.move_mean(a, window=2, min_count=1)
array([ 1. ,  1.5,  2. ,  4. ,  4.5])

Benchmark

Bottleneck comes with a benchmark suite:

>>> bn.bench()
Bottleneck performance benchmark
    Bottleneck 1.3.0.dev0+122.gb1615d7; Numpy 1.16.4
    Speed is NumPy time divided by Bottleneck time
    NaN means approx one-fifth NaNs; float64 used

              no NaN     no NaN      NaN       no NaN      NaN
               (100,)  (1000,1000)(1000,1000)(1000,1000)(1000,1000)
               axis=0     axis=0     axis=0     axis=1     axis=1
nansum         29.7        1.4        1.6        2.0        2.1
nanmean        99.0        2.0        1.8        3.2        2.5
nanstd        145.6        1.8        1.8        2.7        2.5
nanvar        138.4        1.8        1.8        2.8        2.5
nanmin         27.6        0.5        1.7        0.7        2.4
nanmax         26.6        0.6        1.6        0.7        2.5
median        120.6        1.3        4.9        1.1        5.7
nanmedian     117.8        5.0        5.7        4.8        5.5
ss             13.2        1.2        1.3        1.5        1.5
nanargmin      66.8        5.5        4.8        3.5        7.1
nanargmax      57.6        2.9        5.1        2.5        5.3
anynan         10.2        0.3       52.3        0.8       41.6
allnan         15.1      196.0      156.3      135.8      111.2
rankdata       45.9        1.2        1.2        2.1        2.1
nanrankdata    50.5        1.4        1.3        2.4        2.3
partition       3.3        1.1        1.6        1.0        1.5
argpartition    3.4        1.2        1.5        1.1        1.6
replace         9.0        1.5        1.5        1.5        1.5
push         1565.6        5.9        7.0       13.0       10.9
move_sum     2159.3       31.1       83.6      186.9      182.5
move_mean    6264.3       66.2      111.9      361.1      246.5
move_std     8653.6       86.5      163.7      232.0      317.7
move_var     8856.0       96.3      171.6      267.9      332.9
move_min     1186.6       13.4       30.9       23.5       45.0
move_max     1188.0       14.6       29.9       23.5       46.0
move_argmin  2568.3       33.3       61.0       49.2       86.8
move_argmax  2475.8       30.9       58.6       45.0       82.8
move_median  2236.9      153.9      151.4      171.3      166.9
move_rank     847.1        1.2        1.4        2.3        2.6

You can also run a detailed benchmark for a single function using, for example, the command:

>>> bn.bench_detailed("move_median", fraction_nan=0.3)

Only arrays with data type (dtype) int32, int64, float32, and float64 are accelerated. All other dtypes result in calls to slower, unaccelerated functions. In the rare case of a byte-swapped input array (e.g. a big-endian array on a little-endian operating system) the function will not be accelerated regardless of dtype.

Where

download

https://pypi.python.org/pypi/Bottleneck

docs

https://bottleneck.readthedocs.io

code

https://github.com/pydata/bottleneck

mailing list

https://groups.google.com/group/bottle-neck

License

Bottleneck is distributed under a Simplified BSD license. See the LICENSE file and LICENSES directory for details.

Install

Requirements:

Bottleneck

Python 2.7, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11; NumPy 1.16.0+

Compile

gcc, clang, MinGW or MSVC

Unit tests

pytest

Documentation

sphinx, numpydoc

To install Bottleneck on Linux, Mac OS X, et al.:

$ pip install .

To install bottleneck on Windows, first install MinGW and add it to your system path. Then install Bottleneck with the command:

$ python setup.py install --compiler=mingw32

Alternatively, you can use the Windows binaries created by Christoph Gohlke: http://www.lfd.uci.edu/~gohlke/pythonlibs/#bottleneck

Unit tests

After you have installed Bottleneck, run the suite of unit tests:

In [1]: import bottleneck as bn

In [2]: bn.test()
============================= test session starts =============================
platform linux -- Python 3.7.4, pytest-4.3.1, py-1.8.0, pluggy-0.12.0
hypothesis profile 'default' -> database=DirectoryBasedExampleDatabase('/home/chris/code/bottleneck/.hypothesis/examples')
rootdir: /home/chris/code/bottleneck, inifile: setup.cfg
plugins: openfiles-0.3.2, remotedata-0.3.2, doctestplus-0.3.0, mock-1.10.4, forked-1.0.2, cov-2.7.1, hypothesis-4.32.2, xdist-1.26.1, arraydiff-0.3
collected 190 items

bottleneck/tests/input_modification_test.py ........................... [ 14%]
..                                                                      [ 15%]
bottleneck/tests/list_input_test.py .............................       [ 30%]
bottleneck/tests/move_test.py .................................         [ 47%]
bottleneck/tests/nonreduce_axis_test.py ....................            [ 58%]
bottleneck/tests/nonreduce_test.py ..........                           [ 63%]
bottleneck/tests/reduce_test.py ....................................... [ 84%]
............                                                            [ 90%]
bottleneck/tests/scalar_input_test.py ..................                [100%]

========================= 190 passed in 46.42 seconds =========================
Out[2]: True

If developing in the git repo, simply run py.test

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bottleneck-1.4.2.tar.gz (103.6 kB view details)

Uploaded Source

Built Distributions

Bottleneck-1.4.2-cp313-cp313-win_amd64.whl (111.8 kB view details)

Uploaded CPython 3.13 Windows x86-64

Bottleneck-1.4.2-cp313-cp313-win32.whl (107.2 kB view details)

Uploaded CPython 3.13 Windows x86

Bottleneck-1.4.2-cp313-cp313-musllinux_1_2_x86_64.whl (362.1 kB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

Bottleneck-1.4.2-cp313-cp313-musllinux_1_2_i686.whl (370.7 kB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ i686

Bottleneck-1.4.2-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (361.8 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.4.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (365.4 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Bottleneck-1.4.2-cp313-cp313-macosx_11_0_arm64.whl (98.7 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

Bottleneck-1.4.2-cp312-cp312-win_amd64.whl (111.8 kB view details)

Uploaded CPython 3.12 Windows x86-64

Bottleneck-1.4.2-cp312-cp312-win32.whl (107.1 kB view details)

Uploaded CPython 3.12 Windows x86

Bottleneck-1.4.2-cp312-cp312-musllinux_1_2_x86_64.whl (361.8 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

Bottleneck-1.4.2-cp312-cp312-musllinux_1_2_i686.whl (370.4 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

Bottleneck-1.4.2-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (361.8 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.4.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (365.4 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Bottleneck-1.4.2-cp312-cp312-macosx_11_0_arm64.whl (98.7 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

Bottleneck-1.4.2-cp311-cp311-win_amd64.whl (111.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

Bottleneck-1.4.2-cp311-cp311-win32.whl (106.9 kB view details)

Uploaded CPython 3.11 Windows x86

Bottleneck-1.4.2-cp311-cp311-musllinux_1_2_x86_64.whl (360.3 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

Bottleneck-1.4.2-cp311-cp311-musllinux_1_2_i686.whl (369.5 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

Bottleneck-1.4.2-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (360.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.4.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (365.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Bottleneck-1.4.2-cp311-cp311-macosx_11_0_arm64.whl (98.6 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

Bottleneck-1.4.2-cp310-cp310-win_amd64.whl (111.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

Bottleneck-1.4.2-cp310-cp310-win32.whl (106.9 kB view details)

Uploaded CPython 3.10 Windows x86

Bottleneck-1.4.2-cp310-cp310-musllinux_1_2_x86_64.whl (356.1 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

Bottleneck-1.4.2-cp310-cp310-musllinux_1_2_i686.whl (365.2 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

Bottleneck-1.4.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (356.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.4.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (360.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Bottleneck-1.4.2-cp310-cp310-macosx_11_0_arm64.whl (98.6 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

Bottleneck-1.4.2-cp39-cp39-win_amd64.whl (111.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

Bottleneck-1.4.2-cp39-cp39-win32.whl (107.0 kB view details)

Uploaded CPython 3.9 Windows x86

Bottleneck-1.4.2-cp39-cp39-musllinux_1_2_x86_64.whl (355.3 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

Bottleneck-1.4.2-cp39-cp39-musllinux_1_2_i686.whl (364.4 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

Bottleneck-1.4.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (355.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.4.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (359.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Bottleneck-1.4.2-cp39-cp39-macosx_11_0_arm64.whl (98.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

File details

Details for the file bottleneck-1.4.2.tar.gz.

File metadata

  • Download URL: bottleneck-1.4.2.tar.gz
  • Upload date:
  • Size: 103.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for bottleneck-1.4.2.tar.gz
Algorithm Hash digest
SHA256 fa8e8e1799dea5483ce6669462660f9d9a95649f6f98a80d315b84ec89f449f4
MD5 3fac642a0e58ef58cae86cff0543ede3
BLAKE2b-256 2e619fb34409d58f04e1929da41666a055c36f9495903ff669b80c893bdee65f

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 26b5f0531f7044befaad95c20365dd666372e66bdacbfaf009ff65d60285534d
MD5 daf81f9d6c4a33fa81ce212c49f61023
BLAKE2b-256 54f0e1640ccd8468c61693092f38f835ef35a68a1ea72c3388683148b3800aa6

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp313-cp313-win32.whl.

File metadata

  • Download URL: Bottleneck-1.4.2-cp313-cp313-win32.whl
  • Upload date:
  • Size: 107.2 kB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for Bottleneck-1.4.2-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 2db287f6ecdbb1c998085eca9b717fec2bfc48a4ab6ae070a9820ba8ab59c90b
MD5 29ade3ef82a8b90e57acd959d297c4c2
BLAKE2b-256 92e3123488804830604432f84a2c43e611b8e1971e230b9466a7315850d22a58

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 964f6ac4118ddab3bbbac79d4f726b093459be751baba73ee0aa364666e8068e
MD5 2ccc75de97107a1de2c740dc738721be
BLAKE2b-256 51059d1ababa3fd34014b708351270307320c0bc595d2d66c2ba2b9b92f0d618

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 7ebbcbe5d4062e37507b9a81e2aacdb1fcccc6193f7feff124ef2b5a6a5eb740
MD5 e6d06221d88ef3a3ac1b6320717ee121
BLAKE2b-256 f3b35f96d7bb23a291b835bf0a34eec359c55613f6c4262ad1bb161d897499c0

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2c9dbaf737b605b30c81611f2c1d197c2fd2e46c33f605876c1d332d3360c4fc
MD5 6bc047641e2ffa59a876939beb45cb1b
BLAKE2b-256 d0aaccae264aac3b2621fa8a98c7afe033f22a352467cbf85fa2799d176ec31b

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e7a1b023de1de3d84b18826462718fba548fed41870df44354f9ab6a414ea82f
MD5 e2e8ae583cb648ca57f46f8a61f6f8d1
BLAKE2b-256 80966540ac9a9943b0d6f0199eddbde55e878f970d2bdda31207dc3e7a195c2b

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c1c885ad02a6a8fa1f7ee9099f29b9d4c03eb1da2c7ab25839482d5cce739021
MD5 c5179d77bedfd5ccaef46cf67257398e
BLAKE2b-256 2e65148e146ca8c16af9881a0db1d8d1849d49a5186fc9f065c79a8d25d6fc0c

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 48c6b9d9287c4102b803fcb01ae66ae7ef6b310b711b4b7b7e23bf952894dc05
MD5 d6f632454ef2e09302c9a35b17970333
BLAKE2b-256 2225908b75a329a05b82d717661aa95a1968d9dae0e68c654d5e16bfe0d6fbb6

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp312-cp312-win32.whl.

File metadata

  • Download URL: Bottleneck-1.4.2-cp312-cp312-win32.whl
  • Upload date:
  • Size: 107.1 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for Bottleneck-1.4.2-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 7363b3c8ce6ca433779cd7e96bcb94c0e516dcacadff0011adcbf0b3ac86bc9d
MD5 a9740aaa422e5da5f66e23d90604f79a
BLAKE2b-256 fa6be8fda0510b8fa0f3f9a3586efc941abe9d546198e95ae5690c3c83370b36

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 99778329331d5fae8df19772a019e8b73ba4d9d1650f110cd995ab7657114db0
MD5 efaba60aefa2d93090b31696cdbfbe74
BLAKE2b-256 fdee0a8157e6bbd2168bf6171811534a5a73a35f54c453dd7d86a323773b5bd7

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 037315c56605128a39f77d19af6a6019dc8c21a63694a4bfef3c026ed963be2e
MD5 a247f17a6561a7d6bea42e6b2cd54247
BLAKE2b-256 8f4c811475885bd60cf0cb28822568d0c0c3c7d7de4fbccd2ebb66863e7dc726

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1fc4e7645bd425c05e05acd5541e9e09cb4179e71164e862f082561bf4509eac
MD5 dbe115da6b35c931ab856fd1070dbaaf
BLAKE2b-256 822bc6fea2bb048d04c13b8564052818a198d50ce58d5f439ec69c2b0c458703

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 070d22f2f62ab81297380a89492cca931e4d9443fa4b84c2baeb52db09c3b1b4
MD5 46d006990a9549b9b3fda4679d17383d
BLAKE2b-256 c493e100b6eda77f2aecf5f16157b8c04dd3463913ba188b582650cd77ccf42b

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a74ddd0417f42eeaba37375f0fc065b28451e0fba45cb2f99e88880b10b3fa43
MD5 7b87aadc8a7bd29b5fc1f60c539ac3a8
BLAKE2b-256 d2266f5124e31a67f75e2a3b9239cc382145326e91fc45e7d7bc9ebffa05fdfa

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 89651ef18c06616850203bf8875c958c5d316ea48d8ba60d9b450199d39ae391
MD5 d01cd29e92986fd3e1c972e10dc96648
BLAKE2b-256 d3eb3fd23404bbc612cf9e4883c3c2b359bd14528e234d5c40bb29bcfd591ef8

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: Bottleneck-1.4.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 106.9 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for Bottleneck-1.4.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 c663cbba8f52011fd82ee08c6a85c93b34b19e0e7ebba322d2d67809f34e0597
MD5 8346a7286bdc5708d16a480e0e08730e
BLAKE2b-256 96cbc1f2a37e86e9fa47845259f0a8f32d550f7f27b908432369de055be9f7c4

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 7c7d29c044a3511b36fd744503c3e697e279c273a8477a6d91a2831d04fd19e0
MD5 8a61c7401ee7f9097db37ccf519216f6
BLAKE2b-256 dc1e9310f058ddee71798a76ab15c5c1ad71f0a5c3c6348f7faab9b6da038484

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 1f61658ebdf5a178298544336b65020730bf86cc092dab5f6579a99a86bd888b
MD5 dc29cfa5ecf506f84e6700e7d0c5be17
BLAKE2b-256 ffcbd287febe0e6504194ba94cf4a6d80df66a0031ca33a32b30f00c030238cc

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 122845e3106c85465551d4a9a3777841347cfedfbebb3aa985cca110e07030b1
MD5 fea4147e739a1342738538d1a34afca5
BLAKE2b-256 7ed639e957e9df9ab16df9c531e8ddf71594877063d27aa036dd105b66d3b3b3

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c2fd34b9b490204f95288f0dd35d37042486a95029617246c88c0f94a0ab49fe
MD5 f84fa4342bc8f2b6d319efef02231a68
BLAKE2b-256 166409d72babae7cc29341c52f2e9381066672743d4f797c86b1e735205d5fc8

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b6902ebf3e85315b481bc084f10c5770f8240275ad1e039ac69c7c8d2013b040
MD5 f93a4c28ab2c484c6cf94c3b55f36ff1
BLAKE2b-256 88b831a1cc8279bf11a60c04b844a42666927307a47bb48964cbd92ec9f40e3e

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 eb0c611d15b0fd8f511d288e8964e4725b4b3b0d9d310880cf0ff6b8dd03c859
MD5 f0d87042bb45aab8c9014fc26f6be21d
BLAKE2b-256 d72532643c8e8646f30121e5c67a0c0579dbc910f3bf9e121683f28165c6d374

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: Bottleneck-1.4.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 106.9 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for Bottleneck-1.4.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 e56a206fbf48e3b8054a964398bf1ed843e9625d3c6bdbeb7898cb48bf97441b
MD5 a07256efa0b536f0eaad0ab220ada5d2
BLAKE2b-256 4e9153353689ed860403f421900ec0ce67dfa763bd39d07d9da5b69c48b3941a

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 6282fa925ac3768f66e3547f89a512376d3f9de7ef53bdd37aa29232fd864054
MD5 73c60aa484fea6be15446a12eb1fb83f
BLAKE2b-256 b66beb7a04afa8d4641a498b62a24db5a491ab3d6945890e9f5d5f852ba0aa8c

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 6b7790ca8658cd69e3cc0d0e4ff0e9829d60849bf7945fbd7344fbce05b2bbb8
MD5 3c4019ec9ced6fdbcafc3235a7a8a5c0
BLAKE2b-256 201b05dd0433052f62b416d3af4d58556f377518b1d35f76872c53e79bd7818f

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2e2fe327dc2d0564e295a5857a252755103f8c6e05b07d3ff80a69afaa9f5065
MD5 4a87bc28e3b6190fa79b071d5c381c64
BLAKE2b-256 e38f8d0322287dd208bd35b2814152726d6f7ec9346c9ad2abae18e23e9ef15e

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4c6df9a60ec6ab88fec934ca864266ba95edd89c490af71dc9cd8afb2a54ebd9
MD5 1976800ef7494c6ff1f88d5ef07e558d
BLAKE2b-256 b7db5a600f6c071e93284e8480684b971a7cce334d9e6b6d57386cc391537d14

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 125436df93751a226eab1732783aa8f6125e88e779587aa61be071fb66e41f9d
MD5 f5c8eb5fdd57d6a621e67eb8ef2482e9
BLAKE2b-256 1af37e76090a8ab7f2d5f123ba6cad556c7c324bcef2320b1aa3e6a8f87c0f1d

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: Bottleneck-1.4.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 111.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for Bottleneck-1.4.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7b459d08f1f3e2da85db0a9e2d3e6e3541105f5866e9026dbca32dafc5106f2b
MD5 1436909be886e9dfe6ef70beb3ec5170
BLAKE2b-256 afaebfeebdef6dcb775d44a2325b933a3f4ad2d37aff31ae9d94facd0eb42c1b

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: Bottleneck-1.4.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 107.0 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for Bottleneck-1.4.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 9d7b12936516f944e3d981a64038f99acb21f0e99f92fad16d9a468248c2b231
MD5 33e3792b759801f0b5600c477d3ebf4c
BLAKE2b-256 0eea681c32f0b3bc08262dd4b3ec96baa7cb87448110949af87390e2452953d6

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 48d2e101d99a9d72aa86da1a048d2094f4e1db0cf77519d1c33239f9d62da162
MD5 d18a3d56781a17ab6b635b63ebec196d
BLAKE2b-256 5a8a987aecb4cedd2f2c9a768579065bfd576ff2019afc945e1a63f7ebd86ecc

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 dce1a3c5ff89a56fb2678c9bda17b89f60f710d6002ab7cd72b7661bc3fae64d
MD5 f425a00ba2ec2863af110e6259a5157e
BLAKE2b-256 853b6aa6476f93696ac8dc8eaad2a18a41c56d6afaa829abe3486dce4a135c56

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 52248f3e0fead78c17912fb086a585c86f567019247d21c69e87645241b97b02
MD5 6f4cc8971bf6aa22cc50f2f8fb303a6f
BLAKE2b-256 cd29d0c02454677690a05a894b58904e9f2c07febc4f07d3a21b0779bfdfcfcc

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b33e83665e7daf7f513fe1f7b04b13944d44b6635c45d5a9c89c9e5ed11811b6
MD5 a7e15ce4560fd861686b21dba63edc09
BLAKE2b-256 520a18fb215a850ad413dd8f6602ba4d26dfddfbcae09b0af7b38e3803406b24

See more details on using hashes here.

File details

Details for the file Bottleneck-1.4.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 72d6aa95cdd782833d2589f81434fd865ba004b8938e07920b6ef02796ce8918
MD5 583b72d67678756c840e8dfad6c1f9f0
BLAKE2b-256 ed988827f1248dbbd23730a1894be6c5a70bebf57f6d20def7fc6e685f10a869

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page