Skip to main content

Fast NumPy array functions written in C

Project description

Bottleneck is a collection of fast NumPy array functions written in C.

Let’s give it a try. Create a NumPy array:

>>> import numpy as np
>>> a = np.array([1, 2, np.nan, 4, 5])

Find the nanmean:

>>> import bottleneck as bn
>>> bn.nanmean(a)
3.0

Moving window mean:

>>> bn.move_mean(a, window=2, min_count=1)
array([ 1. ,  1.5,  2. ,  4. ,  4.5])

Benchmark

Bottleneck comes with a benchmark suite:

>>> bn.bench()
Bottleneck performance benchmark
    Bottleneck 1.3.0.dev0+122.gb1615d7; Numpy 1.16.4
    Speed is NumPy time divided by Bottleneck time
    NaN means approx one-fifth NaNs; float64 used

              no NaN     no NaN      NaN       no NaN      NaN
               (100,)  (1000,1000)(1000,1000)(1000,1000)(1000,1000)
               axis=0     axis=0     axis=0     axis=1     axis=1
nansum         29.7        1.4        1.6        2.0        2.1
nanmean        99.0        2.0        1.8        3.2        2.5
nanstd        145.6        1.8        1.8        2.7        2.5
nanvar        138.4        1.8        1.8        2.8        2.5
nanmin         27.6        0.5        1.7        0.7        2.4
nanmax         26.6        0.6        1.6        0.7        2.5
median        120.6        1.3        4.9        1.1        5.7
nanmedian     117.8        5.0        5.7        4.8        5.5
ss             13.2        1.2        1.3        1.5        1.5
nanargmin      66.8        5.5        4.8        3.5        7.1
nanargmax      57.6        2.9        5.1        2.5        5.3
anynan         10.2        0.3       52.3        0.8       41.6
allnan         15.1      196.0      156.3      135.8      111.2
rankdata       45.9        1.2        1.2        2.1        2.1
nanrankdata    50.5        1.4        1.3        2.4        2.3
partition       3.3        1.1        1.6        1.0        1.5
argpartition    3.4        1.2        1.5        1.1        1.6
replace         9.0        1.5        1.5        1.5        1.5
push         1565.6        5.9        7.0       13.0       10.9
move_sum     2159.3       31.1       83.6      186.9      182.5
move_mean    6264.3       66.2      111.9      361.1      246.5
move_std     8653.6       86.5      163.7      232.0      317.7
move_var     8856.0       96.3      171.6      267.9      332.9
move_min     1186.6       13.4       30.9       23.5       45.0
move_max     1188.0       14.6       29.9       23.5       46.0
move_argmin  2568.3       33.3       61.0       49.2       86.8
move_argmax  2475.8       30.9       58.6       45.0       82.8
move_median  2236.9      153.9      151.4      171.3      166.9
move_rank     847.1        1.2        1.4        2.3        2.6

You can also run a detailed benchmark for a single function using, for example, the command:

>>> bn.bench_detailed("move_median", fraction_nan=0.3)

Only arrays with data type (dtype) int32, int64, float32, and float64 are accelerated. All other dtypes result in calls to slower, unaccelerated functions. In the rare case of a byte-swapped input array (e.g. a big-endian array on a little-endian operating system) the function will not be accelerated regardless of dtype.

Where

download

https://pypi.python.org/pypi/Bottleneck

docs

https://bottleneck.readthedocs.io

code

https://github.com/pydata/bottleneck

mailing list

https://groups.google.com/group/bottle-neck

License

Bottleneck is distributed under a Simplified BSD license. See the LICENSE file and LICENSES directory for details.

Install

Requirements:

Bottleneck

Python 2.7, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11; NumPy 1.16.0+

Compile

gcc, clang, MinGW or MSVC

Unit tests

pytest

Documentation

sphinx, numpydoc

To install Bottleneck on Linux, Mac OS X, et al.:

$ pip install .

To install bottleneck on Windows, first install MinGW and add it to your system path. Then install Bottleneck with the command:

$ python setup.py install --compiler=mingw32

Alternatively, you can use the Windows binaries created by Christoph Gohlke: http://www.lfd.uci.edu/~gohlke/pythonlibs/#bottleneck

Unit tests

After you have installed Bottleneck, run the suite of unit tests:

In [1]: import bottleneck as bn

In [2]: bn.test()
============================= test session starts =============================
platform linux -- Python 3.7.4, pytest-4.3.1, py-1.8.0, pluggy-0.12.0
hypothesis profile 'default' -> database=DirectoryBasedExampleDatabase('/home/chris/code/bottleneck/.hypothesis/examples')
rootdir: /home/chris/code/bottleneck, inifile: setup.cfg
plugins: openfiles-0.3.2, remotedata-0.3.2, doctestplus-0.3.0, mock-1.10.4, forked-1.0.2, cov-2.7.1, hypothesis-4.32.2, xdist-1.26.1, arraydiff-0.3
collected 190 items

bottleneck/tests/input_modification_test.py ........................... [ 14%]
..                                                                      [ 15%]
bottleneck/tests/list_input_test.py .............................       [ 30%]
bottleneck/tests/move_test.py .................................         [ 47%]
bottleneck/tests/nonreduce_axis_test.py ....................            [ 58%]
bottleneck/tests/nonreduce_test.py ..........                           [ 63%]
bottleneck/tests/reduce_test.py ....................................... [ 84%]
............                                                            [ 90%]
bottleneck/tests/scalar_input_test.py ..................                [100%]

========================= 190 passed in 46.42 seconds =========================
Out[2]: True

If developing in the git repo, simply run py.test

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bottleneck-1.4.0rc5.tar.gz (103.5 kB view details)

Uploaded Source

Built Distributions

Bottleneck-1.4.0rc5-cp312-cp312-win_amd64.whl (111.1 kB view details)

Uploaded CPython 3.12 Windows x86-64

Bottleneck-1.4.0rc5-cp312-cp312-win32.whl (105.9 kB view details)

Uploaded CPython 3.12 Windows x86

Bottleneck-1.4.0rc5-cp312-cp312-musllinux_1_1_x86_64.whl (403.9 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

Bottleneck-1.4.0rc5-cp312-cp312-musllinux_1_1_i686.whl (407.9 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

Bottleneck-1.4.0rc5-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (362.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.4.0rc5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (365.7 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Bottleneck-1.4.0rc5-cp312-cp312-macosx_11_0_arm64.whl (98.7 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

Bottleneck-1.4.0rc5-cp311-cp311-win_amd64.whl (111.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

Bottleneck-1.4.0rc5-cp311-cp311-win32.whl (105.7 kB view details)

Uploaded CPython 3.11 Windows x86

Bottleneck-1.4.0rc5-cp311-cp311-musllinux_1_1_x86_64.whl (403.8 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

Bottleneck-1.4.0rc5-cp311-cp311-musllinux_1_1_i686.whl (408.3 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

Bottleneck-1.4.0rc5-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (360.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.4.0rc5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (365.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Bottleneck-1.4.0rc5-cp311-cp311-macosx_11_0_arm64.whl (98.6 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

Bottleneck-1.4.0rc5-cp310-cp310-win_amd64.whl (111.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

Bottleneck-1.4.0rc5-cp310-cp310-win32.whl (105.7 kB view details)

Uploaded CPython 3.10 Windows x86

Bottleneck-1.4.0rc5-cp310-cp310-musllinux_1_1_x86_64.whl (399.6 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

Bottleneck-1.4.0rc5-cp310-cp310-musllinux_1_1_i686.whl (403.8 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

Bottleneck-1.4.0rc5-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (356.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.4.0rc5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (360.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Bottleneck-1.4.0rc5-cp310-cp310-macosx_11_0_arm64.whl (98.6 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

Bottleneck-1.4.0rc5-cp39-cp39-win_amd64.whl (111.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

Bottleneck-1.4.0rc5-cp39-cp39-win32.whl (105.8 kB view details)

Uploaded CPython 3.9 Windows x86

Bottleneck-1.4.0rc5-cp39-cp39-musllinux_1_1_x86_64.whl (398.2 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

Bottleneck-1.4.0rc5-cp39-cp39-musllinux_1_1_i686.whl (402.5 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

Bottleneck-1.4.0rc5-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (355.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.4.0rc5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (359.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Bottleneck-1.4.0rc5-cp39-cp39-macosx_11_0_arm64.whl (98.6 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

Bottleneck-1.4.0rc5-cp38-cp38-win_amd64.whl (110.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

Bottleneck-1.4.0rc5-cp38-cp38-win32.whl (104.9 kB view details)

Uploaded CPython 3.8 Windows x86

Bottleneck-1.4.0rc5-cp38-cp38-musllinux_1_1_x86_64.whl (398.0 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

Bottleneck-1.4.0rc5-cp38-cp38-musllinux_1_1_i686.whl (406.0 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

Bottleneck-1.4.0rc5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (355.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.4.0rc5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (359.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Bottleneck-1.4.0rc5-cp38-cp38-macosx_11_0_arm64.whl (97.2 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

Bottleneck-1.4.0rc5-cp37-cp37m-win_amd64.whl (110.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

Bottleneck-1.4.0rc5-cp37-cp37m-win32.whl (104.7 kB view details)

Uploaded CPython 3.7m Windows x86

Bottleneck-1.4.0rc5-cp37-cp37m-musllinux_1_1_x86_64.whl (397.7 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

Bottleneck-1.4.0rc5-cp37-cp37m-musllinux_1_1_i686.whl (405.7 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

Bottleneck-1.4.0rc5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (356.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.4.0rc5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (360.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

File details

Details for the file bottleneck-1.4.0rc5.tar.gz.

File metadata

  • Download URL: bottleneck-1.4.0rc5.tar.gz
  • Upload date:
  • Size: 103.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for bottleneck-1.4.0rc5.tar.gz
Algorithm Hash digest
SHA256 bf87fa82c30413e8ecee9fa61c9a7c0ad236a91c5d173b373712e9a459412a1c
MD5 d12c8dbed73af92d79993d83d1b09c42
BLAKE2b-256 99353e651faeaee7f651ae19911299d55d95d65a398aa6ad7b5156939c11a47d

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 30083a4119b72d11f741320216d8045384e549a74cdf81772490326f07f897fb
MD5 f25fad0ec579323aa280d4022355df77
BLAKE2b-256 33872081fb1d3ec0ae8961a725eb69e153b88b3bd1e651da6b47312c13e1cb90

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 cb6d0335a36ff102724a930996bcd6ea81370a6e49faf4752624f7f0bbd988ec
MD5 778da97670a3389bdf27e8b6f9826eeb
BLAKE2b-256 a9f1d06093273706b93958959ec70994937e9e2696e52b95ce252f7630cd169f

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 de870f864638205d98d91b8c4fe04a4cdce9fb3d1fd0160900c8490e0cdca30a
MD5 c31f56a460318b3a64600cd0109a2f36
BLAKE2b-256 6351082f001a623b6d3e0eefe95dd3eb01ec9823b30faba7ea97618f2edfc55a

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d70fb3dd20481219141360ce4194f29fa11529dc1fa312c332abcc149a2227ef
MD5 f8f1cecfa1805b1b478fe84471e30ff6
BLAKE2b-256 eef0e0bcf2ca6cdc05e4e0dcc28e7c27c1bd07e6f61c238d66acc1be9c8eebed

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 776f7ed4476c94ec040e4dfaa35dc1e5d1c633e8ed47c1bdf529447b562a7040
MD5 c3de7ee2e1a20c567b654146f3d10d28
BLAKE2b-256 4aadf6658f02809d6e17bfefb0ab2c608d4350b31151696dc4e6b1ec9c88317a

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7f9b4732405d55203becc08e430d7c4000a46b737ece0a299ab182b00e045484
MD5 eec7bc81ac6e1e1c6df94e186c6deed5
BLAKE2b-256 9bcda1e7e023c408f3c4492cdd49a0d166409d77f35121fcb1d5c3a793156263

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6c064df53000808c89499c16461ec73c47e2ee16295eb34c4ffbef1a80e034f1
MD5 34df336af55410356d94470c8907da3b
BLAKE2b-256 48745a5504c99069d569ed50acaf18422aec835d5cbd8d27c24056a27b0f5049

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6e47a84f13c77627d34f684ef8f16335cab0b569b0bf8281b401d8bf14aa2c51
MD5 2b55ae17bde675cbb9633a8e5bc6e713
BLAKE2b-256 b1f407fa81e0d78dec503aaf2c78efb86e566184145a5aa004d601332e203825

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 fbd7b2757d42da5cce2eb05c0d4ed6766906e99103e1562a98d218e9171b7517
MD5 f937709da7c8dcc8096a59340729f2e2
BLAKE2b-256 333bf699e668f8d9951294bd3bddfc2c81fa05632e756086c58bbf174b992099

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 919c54b1c289af5b8f9f35faf7bcbaee40c30ab3dd0907b8ff83b4cde1315745
MD5 94940888e81ba3383b3bd2ded2dc5b59
BLAKE2b-256 f964e4e70b291dd305afca210c4dec076722fdd5f826740a9c3f925765b4fef6

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 81ffd2e6919983b14a598acb90ba797891196265431217ecd860634da116a99a
MD5 1b79b70a0c91c433a4a8fc3b333152e5
BLAKE2b-256 cb9af66fe7d24cca78ac7592ad99da4b3aa138e72491e89b4df144f979f6d8b2

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e030116c60a2550cd4d8210beee2023808f11e763ef1bbe96cdcd31bcec6a0e3
MD5 f187554b2439123eb18d0494df6855de
BLAKE2b-256 d327045427009aca20c7c6cdcced40c2e84573a0137cc19b7d2a1741ffca806f

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0c488dfedb3dbc914b146b967decaa5cf65d5ce5177c5f67171b9abad8e7099a
MD5 1654b766838cbd2c9021f2d4f47d58d1
BLAKE2b-256 5eb4202ae27b1b28e93a8ff649b585b4251cedea55e361aaf873357e4691a8c0

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2b05274c176b60d5294226f67680241b24561883f17f2fd692f4f75fb6d1a37a
MD5 86f4da742f2db1bb7b103ba201e423c2
BLAKE2b-256 6ce2760f912f117856d15e5bd42ae359da76ad4367491e1c119124514e04332d

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 cd00acc0f06b7df956079007e7bb715c2d29a21d7edf723c3305ee8865b88dda
MD5 6063e373d76bff04a523e756c80d6297
BLAKE2b-256 39e7deef1614c11588cfeb893e351ea03d96e59f3d7a2ae274b2e51218e12b4b

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 b53430f8f701e851c4aa126e9e8acb09c9ee2212ea2062f9f9c2999222dd0821
MD5 fdd64ca4322e3ac0f5793316ae33c8a5
BLAKE2b-256 d81f8fab337b40efaf04fe740349182ce1bcee24efd50b6f075ea4e99f811a84

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 278a7d1331affac4d7d76da967d5cd3d873ff2ad7205a27d8ef947a0532faf2c
MD5 3fa19d7477ca6f8957b7ce23de56e7ef
BLAKE2b-256 63bb34aec507c3286b3aec1e2f1cf4b1869bec29018433506144641fda6f0631

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 15c6558684c4de9e53355a9d31ec0ea16bd687b90ddb130c41302e3023effc22
MD5 ed6f0b2994776f6b3bcec867992c4748
BLAKE2b-256 6650a44d11b82eab1739299a812aa65b20d96a62a6d972e358d9021d71f93275

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 77a92f5485a02723077481a2a4eea9e1fb7c021bc83385dabd05e4d11ed73d1e
MD5 d9bf13d4c5ea207d8198d92b481ff183
BLAKE2b-256 68a99add78715240dac266aefe434eef4e9781cca0246ce187f93080884c89da

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4890adb42af68075cbef4dcc51827013579510ea71b1fad9c0866f087303f48a
MD5 bf5c6dbe9f7469d1a1793c465c245380
BLAKE2b-256 6c33ccdf4bfcc9131856691fdd4239a6700239121c1d029ce2bdd47ece9faf8e

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 aa7298f62a7078b361c6c85ff755513ebd0dbf6f60e67c24592c77754949b5c7
MD5 c12924c04179ae6e492f295d3219b9b0
BLAKE2b-256 362a5630bb86bae7ff08e1e1b21f46323c86179a0e46de5b77ca83886d6d87b6

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0bf696fc8646b19cbcea15045318c1baeb86db599545d08a6584c76d58afc43b
MD5 f11eafd71cd106286d433a01fe71fe94
BLAKE2b-256 1144a4602f3d39d645fbd35730b286fa0c34963c2329e4fe0080af6ae6e55fcb

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp39-cp39-win32.whl.

File metadata

  • Download URL: Bottleneck-1.4.0rc5-cp39-cp39-win32.whl
  • Upload date:
  • Size: 105.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for Bottleneck-1.4.0rc5-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 2adb65f65f08dd1758eafb66140473d5a0a696e9858265abbd46fb60e8bf85d9
MD5 f1fb2d6e5c7536275aa719516bfcd3fb
BLAKE2b-256 589cda012b3f196c10d4c2fbea75c0a9e05bdaaef2d6464ea510c89246ee4a69

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d22ce3c5fe77b96520d06602f329c1ca702454fcf6c94f4866b57551a5ed946c
MD5 b81ef0900cbdaec585dde96f978a23a6
BLAKE2b-256 123b6fe8874603afe5f9a1893fff66a979b535b7791345ae8fff1af10f237ee1

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 18cde5cdf6682a34c10d065f23aca003ab5dbe7e1ff625da3705131fcad2144b
MD5 4d36e5e2b90cacf8fcf032d89dc94960
BLAKE2b-256 fbed67e6ccdf70972334f6ca306f72f8361fb9d767aac1515c814fd070b4e2a9

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0e982139dd8b72923e31fc572e2e399c7239a8641202aae4fef8ed8c155621e6
MD5 3c16e25d138191db866f5ee5ad2aa9bd
BLAKE2b-256 cd3322a9b3aa72eae90e413075f2ef91b9c3ed27e7d5a71b1f2d0f74178c50ca

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 53c59c761acf517ab629e4c77c58740eeadc4a1490acb6413dd85efbe79a6f19
MD5 edf3d0dc9b13556a53df1cb9927baf07
BLAKE2b-256 503c0d86ac266f3359fa0d23aceda56c68cde04ce436c9869c068b3d09f7a92e

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a98ea65a08e4a6370ddc27704890d4244c85f6e3740f8bfa639bf09dfe009aa7
MD5 2338e11b303dfd8e64e66df7b5381579
BLAKE2b-256 d54ac9c30102696395473a8277ee31068d0e0cb02d5803978bf51f62ad4e87f9

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 98e6515293bc4aa4d31d0362e97468345d070a819fc0baabe5042d3c6070651c
MD5 434530763fa4e7ca9245adff8eee531f
BLAKE2b-256 928485e88aa669fe52d12bb72ce2df8736b592a6c1af9a757c967596a1de303c

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp38-cp38-win32.whl.

File metadata

  • Download URL: Bottleneck-1.4.0rc5-cp38-cp38-win32.whl
  • Upload date:
  • Size: 104.9 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for Bottleneck-1.4.0rc5-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 080b7be05a1b324231cbbe3b0fe17ef557cac35eabfd1a9eb49eb104c9958117
MD5 4282bdf8a75d733a36c9b9106a227811
BLAKE2b-256 1ad51d36035ae67ae678b7f753024d8ec88bea1fa8766fc1e9cc61d1b0973ca4

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 795b5bfc7aa82f5df503c39c39e0a16b90e4d1163e7203a5d50f5a1886fef0d0
MD5 725e9c09c19e964252ee2f3a3085458f
BLAKE2b-256 be6cb712ceba5afd8438b8be05bcf2a52271e1e4ad682ee68c2b886bddefec24

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 19854a38f01e57b21754c5b7a5c044e3d04045f745546b8e714b9272c6e4ec3b
MD5 475bec9a88df169c68a1898904b71387
BLAKE2b-256 2d1b7453eb09fd596eb00a847e551641d9a9ff2a18e9b3ca51bf3a123b7fabd1

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4f010e03def6044200ed077a552329176c5b7319edb08223b1b7d9c7ece861b0
MD5 50b4b089fe2f6b3f867406727ca6d589
BLAKE2b-256 5cee64df56ecb7a5a726bbc4b0084f31a3229de19090e0b7db4d2322edd8c072

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 876575143ade40d28f2e768bed60715c9a8c701e966911620780df79428adb77
MD5 328c58fad0e89511797f92aadba1a0b8
BLAKE2b-256 23fe36c08a9a457b140e1842368cec0d818c3c222f2d6af6f46dd41580928b9b

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 70f27871daaf34efb8ff47696e3798df303cc9c4f1674e1baa40260de925df56
MD5 b612411f4074e5fadf4ade30bce52030
BLAKE2b-256 0259e26e3a2fffaf89df21ba64ea8fe5f5efdad7322a20a6cd5796ce4e2873ac

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 2d6f861431603fa07e996ad89ea2286521d4c3f700f9b199bccc06f13d89d535
MD5 aa995878cbeaca418e108cc27521da79
BLAKE2b-256 ca9ad3250fe1e3aa71ac23afde865f6a3f8290e6af5f5efd75ebc2d3db4f7686

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp37-cp37m-win32.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 249c40fdf3282f1fd662742f23497e26b00c3f458e3f8b0e94389c0bc23a7a1b
MD5 1a9635bfd1666305fef01f72bd5c6b91
BLAKE2b-256 35845f958d0d231e9be0519090378210924b4b83a7da16796bdc71a113210681

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 329b4491273ea0403691868afb39300ca08405037bad2306a88fd2b7e650f57c
MD5 f191f83fc3bed33e9fbbfc5e6c8c3238
BLAKE2b-256 7632b2d1f0d2bd9e1960337fd09af1a4c116b6a11810f49ecc6e3f671eb74681

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d31706e75383e1815a9f7208c6bfa04f446b48288801a25dcfcfaaa9357f1beb
MD5 5f3aa2d9e20d4486cdfdd1defc7df5cb
BLAKE2b-256 6cb28c72af9b25f03b04788739c7c06b0daf1559a22c59466e642aac7bdb6b1a

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a67d847aa03c94819aed2e0b18fedcb75e355d5baa27de4d0ba17bb2462b717e
MD5 ae82cb4c530ba0f686d730aeca4a8567
BLAKE2b-256 2d442415c5e4a8d005caa4690d4a466facfc74cd4868b612bb0c0980605b9093

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.0rc5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.0rc5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 12473d78b2ce71d34e8f06599587910ba9f42ca9c684b2cef15c99f1e8106b56
MD5 2d2615722b02bd1b491e221d965fdc4b
BLAKE2b-256 99b1dbb46d38113f39223ebd5b4b0631f383cc688661335539f5994798ff906c

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page