Skip to main content

Fast NumPy array functions written in C

Project description

Bottleneck is a collection of fast NumPy array functions written in C.

Let’s give it a try. Create a NumPy array:

>>> import numpy as np
>>> a = np.array([1, 2, np.nan, 4, 5])

Find the nanmean:

>>> import bottleneck as bn
>>> bn.nanmean(a)
3.0

Moving window mean:

>>> bn.move_mean(a, window=2, min_count=1)
array([ 1. ,  1.5,  2. ,  4. ,  4.5])

Benchmark

Bottleneck comes with a benchmark suite:

>>> bn.bench()
Bottleneck performance benchmark
    Bottleneck 1.3.0.dev0+122.gb1615d7; Numpy 1.16.4
    Speed is NumPy time divided by Bottleneck time
    NaN means approx one-fifth NaNs; float64 used

              no NaN     no NaN      NaN       no NaN      NaN
               (100,)  (1000,1000)(1000,1000)(1000,1000)(1000,1000)
               axis=0     axis=0     axis=0     axis=1     axis=1
nansum         29.7        1.4        1.6        2.0        2.1
nanmean        99.0        2.0        1.8        3.2        2.5
nanstd        145.6        1.8        1.8        2.7        2.5
nanvar        138.4        1.8        1.8        2.8        2.5
nanmin         27.6        0.5        1.7        0.7        2.4
nanmax         26.6        0.6        1.6        0.7        2.5
median        120.6        1.3        4.9        1.1        5.7
nanmedian     117.8        5.0        5.7        4.8        5.5
ss             13.2        1.2        1.3        1.5        1.5
nanargmin      66.8        5.5        4.8        3.5        7.1
nanargmax      57.6        2.9        5.1        2.5        5.3
anynan         10.2        0.3       52.3        0.8       41.6
allnan         15.1      196.0      156.3      135.8      111.2
rankdata       45.9        1.2        1.2        2.1        2.1
nanrankdata    50.5        1.4        1.3        2.4        2.3
partition       3.3        1.1        1.6        1.0        1.5
argpartition    3.4        1.2        1.5        1.1        1.6
replace         9.0        1.5        1.5        1.5        1.5
push         1565.6        5.9        7.0       13.0       10.9
move_sum     2159.3       31.1       83.6      186.9      182.5
move_mean    6264.3       66.2      111.9      361.1      246.5
move_std     8653.6       86.5      163.7      232.0      317.7
move_var     8856.0       96.3      171.6      267.9      332.9
move_min     1186.6       13.4       30.9       23.5       45.0
move_max     1188.0       14.6       29.9       23.5       46.0
move_argmin  2568.3       33.3       61.0       49.2       86.8
move_argmax  2475.8       30.9       58.6       45.0       82.8
move_median  2236.9      153.9      151.4      171.3      166.9
move_rank     847.1        1.2        1.4        2.3        2.6

You can also run a detailed benchmark for a single function using, for example, the command:

>>> bn.bench_detailed("move_median", fraction_nan=0.3)

Only arrays with data type (dtype) int32, int64, float32, and float64 are accelerated. All other dtypes result in calls to slower, unaccelerated functions. In the rare case of a byte-swapped input array (e.g. a big-endian array on a little-endian operating system) the function will not be accelerated regardless of dtype.

Where

download

https://pypi.python.org/pypi/Bottleneck

docs

https://bottleneck.readthedocs.io

code

https://github.com/pydata/bottleneck

mailing list

https://groups.google.com/group/bottle-neck

License

Bottleneck is distributed under a Simplified BSD license. See the LICENSE file and LICENSES directory for details.

Install

Requirements:

Bottleneck

Python 2.7, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11; NumPy 1.16.0+

Compile

gcc, clang, MinGW or MSVC

Unit tests

pytest

Documentation

sphinx, numpydoc

To install Bottleneck on Linux, Mac OS X, et al.:

$ pip install .

To install bottleneck on Windows, first install MinGW and add it to your system path. Then install Bottleneck with the command:

$ python setup.py install --compiler=mingw32

Alternatively, you can use the Windows binaries created by Christoph Gohlke: http://www.lfd.uci.edu/~gohlke/pythonlibs/#bottleneck

Unit tests

After you have installed Bottleneck, run the suite of unit tests:

In [1]: import bottleneck as bn

In [2]: bn.test()
============================= test session starts =============================
platform linux -- Python 3.7.4, pytest-4.3.1, py-1.8.0, pluggy-0.12.0
hypothesis profile 'default' -> database=DirectoryBasedExampleDatabase('/home/chris/code/bottleneck/.hypothesis/examples')
rootdir: /home/chris/code/bottleneck, inifile: setup.cfg
plugins: openfiles-0.3.2, remotedata-0.3.2, doctestplus-0.3.0, mock-1.10.4, forked-1.0.2, cov-2.7.1, hypothesis-4.32.2, xdist-1.26.1, arraydiff-0.3
collected 190 items

bottleneck/tests/input_modification_test.py ........................... [ 14%]
..                                                                      [ 15%]
bottleneck/tests/list_input_test.py .............................       [ 30%]
bottleneck/tests/move_test.py .................................         [ 47%]
bottleneck/tests/nonreduce_axis_test.py ....................            [ 58%]
bottleneck/tests/nonreduce_test.py ..........                           [ 63%]
bottleneck/tests/reduce_test.py ....................................... [ 84%]
............                                                            [ 90%]
bottleneck/tests/scalar_input_test.py ..................                [100%]

========================= 190 passed in 46.42 seconds =========================
Out[2]: True

If developing in the git repo, simply run py.test

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bottleneck-1.4.1rc3.tar.gz (103.5 kB view details)

Uploaded Source

Built Distributions

Bottleneck-1.4.1rc3-cp313-cp313-win_amd64.whl (111.8 kB view details)

Uploaded CPython 3.13 Windows x86-64

Bottleneck-1.4.1rc3-cp313-cp313-win32.whl (107.2 kB view details)

Uploaded CPython 3.13 Windows x86

Bottleneck-1.4.1rc3-cp313-cp313-musllinux_1_2_x86_64.whl (362.1 kB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

Bottleneck-1.4.1rc3-cp313-cp313-musllinux_1_2_i686.whl (370.7 kB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ i686

Bottleneck-1.4.1rc3-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (361.9 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.4.1rc3-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (365.5 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Bottleneck-1.4.1rc3-cp313-cp313-macosx_11_0_arm64.whl (98.7 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

Bottleneck-1.4.1rc3-cp312-cp312-win_amd64.whl (111.8 kB view details)

Uploaded CPython 3.12 Windows x86-64

Bottleneck-1.4.1rc3-cp312-cp312-win32.whl (107.2 kB view details)

Uploaded CPython 3.12 Windows x86

Bottleneck-1.4.1rc3-cp312-cp312-musllinux_1_2_x86_64.whl (361.8 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

Bottleneck-1.4.1rc3-cp312-cp312-musllinux_1_2_i686.whl (370.4 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

Bottleneck-1.4.1rc3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (361.9 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.4.1rc3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (365.5 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Bottleneck-1.4.1rc3-cp312-cp312-macosx_11_0_arm64.whl (98.7 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

Bottleneck-1.4.1rc3-cp311-cp311-win_amd64.whl (111.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

Bottleneck-1.4.1rc3-cp311-cp311-win32.whl (107.0 kB view details)

Uploaded CPython 3.11 Windows x86

Bottleneck-1.4.1rc3-cp311-cp311-musllinux_1_2_x86_64.whl (360.3 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

Bottleneck-1.4.1rc3-cp311-cp311-musllinux_1_2_i686.whl (369.5 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

Bottleneck-1.4.1rc3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (360.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.4.1rc3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (365.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Bottleneck-1.4.1rc3-cp311-cp311-macosx_11_0_arm64.whl (98.6 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

Bottleneck-1.4.1rc3-cp310-cp310-win_amd64.whl (111.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

Bottleneck-1.4.1rc3-cp310-cp310-win32.whl (107.0 kB view details)

Uploaded CPython 3.10 Windows x86

Bottleneck-1.4.1rc3-cp310-cp310-musllinux_1_2_x86_64.whl (356.1 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

Bottleneck-1.4.1rc3-cp310-cp310-musllinux_1_2_i686.whl (365.3 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

Bottleneck-1.4.1rc3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (356.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.4.1rc3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (360.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Bottleneck-1.4.1rc3-cp310-cp310-macosx_11_0_arm64.whl (98.6 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

Bottleneck-1.4.1rc3-cp39-cp39-win_amd64.whl (111.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

Bottleneck-1.4.1rc3-cp39-cp39-win32.whl (107.0 kB view details)

Uploaded CPython 3.9 Windows x86

Bottleneck-1.4.1rc3-cp39-cp39-musllinux_1_2_x86_64.whl (355.4 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

Bottleneck-1.4.1rc3-cp39-cp39-musllinux_1_2_i686.whl (364.5 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

Bottleneck-1.4.1rc3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (355.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.4.1rc3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (359.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Bottleneck-1.4.1rc3-cp39-cp39-macosx_11_0_arm64.whl (98.6 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

File details

Details for the file bottleneck-1.4.1rc3.tar.gz.

File metadata

  • Download URL: bottleneck-1.4.1rc3.tar.gz
  • Upload date:
  • Size: 103.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for bottleneck-1.4.1rc3.tar.gz
Algorithm Hash digest
SHA256 befb851cae0ba8c892cc50633f9567fd200ff756759ffe81072c1736681d1c9d
MD5 8560133de98d3c969cd56f14b7106208
BLAKE2b-256 faf4f49c51be04a40d73913ce078df12716211f46a79d32842c106acbd7edfe2

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 5f5e3f47defe1c9e7ad3598e6c53e9fa12e803fd95b17acc25cf85329c67b24f
MD5 1ba1c4570031e1d428e1684f9f071164
BLAKE2b-256 157d4fcff8e850f60a975a73ed44ca8aa9b54a574790c0de20e6093f8b26f920

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp313-cp313-win32.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 a04ae7862ea9a5271b7d1ab9b37067bfd28dbc173a9fc846c2fcaf5aa6c38254
MD5 ef0bb0a06c9935f57514859d3ace6c56
BLAKE2b-256 b05c4060bd80412b17950a5af1039f616951cf4d7771d05030e5050509f764f4

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9ea77668183237d460e3bc39a2bd12185d0702b3d8e59644913f6e28d03dec01
MD5 e123aa2270e1b11b326117175311013b
BLAKE2b-256 8654b9ed27bccc5215d6063b64d1d321ba7bc6d5f0ba50ac91b8a05bce93f24b

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 f3cc7bf3cc4e14a45e4b522678b7230ca934239d53bad5d4f3344161b0cecaf8
MD5 256f72cb812a6ede10322995101b2580
BLAKE2b-256 83b1a4b1e9acf2700bc0b6aaf27ec1a802166c5877d394272970d1c04d7cbaed

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fad5c003bd34a7a2b3c74aaf1089f770424a48f525b24daba448862d646ed380
MD5 edb55ee0c18af34a955555e67c6281e0
BLAKE2b-256 0cccdc88378778f70eb5040e69885bfee9ca6bdc448db7c96ff38d784e427550

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9364086575c0092b1fcbd46c4f18da89939e94cd1f591ce4b697113be84fbc33
MD5 1c17f237b02ca53b595f83110ddbe5fe
BLAKE2b-256 97f9af80365a1c752476f2e6ac27d37d7ba8c8f2f43c6ad6678ed2d4a8bf38c7

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5ac09eded5841664d60f6dde3dd8a50a421713853021807b694c882d9f1b49ca
MD5 6d1d098e142d24b00b0b4a24b16ff5e6
BLAKE2b-256 7be197418cc45ff2d106e8c4485c729959439d81dbe4fd04bbc1d38adaf6a532

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 76ca0cc34c2ef09f79ce7f9cacae93617fe04f8b620560a0a4c816e615dd6da5
MD5 e09919a5d92b93d312eb02a0203b42f4
BLAKE2b-256 3092fd45bc4ff75e83523b3b6804c1bdcd9347ff699f572ac35aa9be2501f6eb

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 d0120230f7d2037b9316c23a351a7410c86d43209d2f9a5c738f7a15f4d6200d
MD5 071342a70ac82e60b1938235acbf8d6f
BLAKE2b-256 47f62ccafac4fb602409220f6262e3bb10917d63819579b1657b0a667df1f453

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 7830382e2536f0c56b8903a89361a2e66109adc4ada52d184b4e00f640d5a1cb
MD5 ad6c74be7177708b5dd7bb55e93f9092
BLAKE2b-256 2ef4a720df746f392b2911e7ee7eb1a09a36e3e9175c153bb2098c6a58d2c781

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 edeab1122ff71ecfdf66fcfb0618321ea63e8e4868ffad5ef5f730dbe504acf3
MD5 ca2f3a216fc70affbc3390a0fb76d7b0
BLAKE2b-256 ddfecfeeb833a70f29504de3a336f66022f5db1ea44bb824913135b680f40a55

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d8076fe45d78dc65df1be26b4d849ead928c5b38b60f3820da3a00b2dc7fea83
MD5 b1daaaa119639e7a634d5663fb24385e
BLAKE2b-256 7e8c63fec3fde39cbbe10f8f78f78376bf3bae7725a1701c34a0680a50762695

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8a76a87120d3598555372d7db995db711ae6c57b08b308c5f396b974c8638ecf
MD5 4bbbd925cb143ae314e0a4f4e0fecdbd
BLAKE2b-256 4837e794299c674bdbd3b75cfb39a67fd38aafb7f24719cbbbcd0ee52c829a29

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fb3198aee06010bfa453abb02691699a53eb7942770f5eae26b8d1facd6dfa09
MD5 a7eef5d18c8935dfb9b0206ea91033a9
BLAKE2b-256 25d1981b3ef31bb469d14eec70c30f8a8e5c8375670d19d4efa55464e815c432

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2de5721044a982de6fcb012d38402dfd5d03562b7775313aea1cd52813311f35
MD5 6af9dae704b4e78d1fab4c40606f3291
BLAKE2b-256 28cc59beb158604e94f5855c92cf113772db514886272392f05d933dca305a66

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 ba394384643d7673614f1f48ea1689ce9faa6c2d9747fef9800a545a417e330f
MD5 9dbea8a0afd0d0ad4f66f10de087ace2
BLAKE2b-256 69dc0e0a0ef8805a7c982b966309f312b55abb082eb36ff654fd7cdbe4c4346f

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 bb61664b9f9a4c488bd422e009dfd14d49afbdf9267a825aaa66a28df28afe75
MD5 c33ab9cf4060f660926d51cd0479e53b
BLAKE2b-256 b65178d71fee88098f2a8a77de3f6b7d73a51214fd791348c2aca67c58a0e0df

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 feec0f233f4cf2d360bb28d47afd0d9caa6c2879fadedccd1300ec398075aaa6
MD5 5baadadf093765b552de465b12b66719
BLAKE2b-256 ac7bc17ab512484bcf4aedf767cf70b7dfe4ecfd74100cf8ab8e3c06214beb72

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d65bb9becc757766287db75e8d4a26fba436782e85c4318fe668ea0834d722ba
MD5 c34b09191be50cb44d2527e5f85c564b
BLAKE2b-256 f78b5caa36385bf70a1bcbb8f681df59d2e811d8c36d6a6a5146ea27e6df1f2a

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 44db9a44433759adffeefd4a7a9896b1b02514f02182a34edd1bb10474c52a77
MD5 6079bec4013fd18b0b37f37d222cb0a5
BLAKE2b-256 f33f92b5734d4fad68fb09c79f5f5802e5539bb865249558f64e3d2c0ec5c965

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 56bab3e8c718200d8ae1b09a7c59793944b97fa7bc05a66700fc898fe83ff7c9
MD5 fa0fb6ee74cc72b7e85e7f2c024ac971
BLAKE2b-256 a6d243502ffaedc82ef5f8fe1dc20394cdbf62a112dc8f098d0c38c8383c65a1

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7286302456aabeb12592614fd02321eb8913b773d5fa45495e97a120cd22eccd
MD5 de255e729f44e4321eb83b0832572f98
BLAKE2b-256 dfdf94252a60dd7723ec18328ee53d049fb1ebd8a883c592b8b13a041313f6a1

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 cefb98978f7f895f480110aeeb09b51726ea92ebc2271ba4cffa9f0d940ceae0
MD5 e91e2c0e7100694a4fd5ccc4cb4fe132
BLAKE2b-256 b697e3b19919cb1a656ef672f4b11ffe0756e8bfe825b31571984ebbaa27c07f

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f51d49309a501ffc81bd67b863cb1f6a0f912ef987806d753d80ea3ae4b64aab
MD5 a4184e34fe88c803340f820ba881be8b
BLAKE2b-256 9e86de367b0126d36c1e0f33e61fbe144a8cd237c84dd58bfcc676bfe3345ada

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 2a525f69c49f5ca77958d935f6dcc7cff35c4e154c7d67d49e115bb90667de1a
MD5 95dd1799c8e49b02ef2782c553e8d766
BLAKE2b-256 73b5aa4e16faeef88da59036c76b721b198c8e334af7a9f5cedd930b1ed6a1d5

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c5119259084a4069e81d56bb8daa199b52970dcdcea07506c95c17bd45e16ae2
MD5 eac77eee56c5309f067139ecb2fe6a48
BLAKE2b-256 b6f1caedd46db4d7310e8836722603526c5cbd6f916f449b07f9065534b64c24

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 06a87b896c780aad0929945f262b21a70556bf400080e0b05099ce2cf1e247ad
MD5 083ada3a9df3c64293adecd80ad7f5a9
BLAKE2b-256 4203e61b1c5a7058266567996ec11909b19ab8542a840df28d5ee46813efd5b5

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 38b26a6e17b0f918a55aece581f3f831a958eeb1f08456845850623de2ca510f
MD5 68f28ddaa1f2c9f0a2146266346bda3e
BLAKE2b-256 09472cee78ec30f13de0b479d0bee6d9be3a2dd9f9feb9cf783fe8198c4459cc

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ae0097bc356c977e3bcd418b0a8b066ab191a07e29db7be0e26f700ee015e3b3
MD5 7566f3c1deab4b2961c7ac3a3fa636b4
BLAKE2b-256 38993c04723d9a62f1dc4e2f5f612488c7a3e2ff4e8641c8dcf7e51ba7c54248

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp39-cp39-win32.whl.

File metadata

  • Download URL: Bottleneck-1.4.1rc3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 107.0 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for Bottleneck-1.4.1rc3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 8d010d258c3fa33d28c9eb3de755127682f92cd4a192929fd4d71e3e2eb37982
MD5 7d8ede770768a4242c56e1108e9d5f2a
BLAKE2b-256 be82f35508c677e7031226cea7ce1dcca8d4cfbad3a355fc0a3eb99e27adb24e

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 058505d0bc8334b2913466ec4ddcf0a429bcfd57aad279a3988448a11fb002e9
MD5 6021a61bc684831a5bc2873157be33b6
BLAKE2b-256 9672fa0a77dc1503a704fbb4fc10a8a0df22469c613b3fec7cd04e4d2110713b

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 f4b150ed3075e1308a1d6f37be2ce07414eaaaf1c2998eb8aa989e250babde6a
MD5 8fe85851b59ee3f1b88207ab9a15c82d
BLAKE2b-256 34bfac40bdae1c66e50ab9116acc19d231905d00ace2a874a310acff39b1e8e2

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 405ddac929a43dac9c3ff07c0e9c773477fe7e630851bd56ec77c16035f12991
MD5 4a5c52121ab382e1ad6abdcbfc665ad3
BLAKE2b-256 29aedd54f11758c266e9c72d5647209722712cd0495c1ed0f2ed27615eb5107c

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 04d34dfd40c0ac69d487194959d4e4eea5f23b3654095d627b8e810c86b3e7bb
MD5 b7a22f661d4d709898ce70cc32e43bc3
BLAKE2b-256 fbde50537782e1d8c7df2df6fe05d933470d7b52ab2f7d581bcdc8cafc155a9f

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.1rc3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.1rc3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 951d6ba818da1de8fe44084b53d2135b969aafb60eba5295d42c09d38cb6200a
MD5 fd2473d85dc6f8bc56d0d57c81f29308
BLAKE2b-256 39fea3ff24425bfc1d31ad13a09c638b6395f7336ab9de1687cb060cd6d0c04a

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page