Skip to main content

Fast NumPy array functions written in C

Project description

Bottleneck is a collection of fast NumPy array functions written in C.

Let’s give it a try. Create a NumPy array:

>>> import numpy as np
>>> a = np.array([1, 2, np.nan, 4, 5])

Find the nanmean:

>>> import bottleneck as bn
>>> bn.nanmean(a)
3.0

Moving window mean:

>>> bn.move_mean(a, window=2, min_count=1)
array([ 1. ,  1.5,  2. ,  4. ,  4.5])

Benchmark

Bottleneck comes with a benchmark suite:

>>> bn.bench()
Bottleneck performance benchmark
    Bottleneck 1.3.0.dev0+122.gb1615d7; Numpy 1.16.4
    Speed is NumPy time divided by Bottleneck time
    NaN means approx one-fifth NaNs; float64 used

              no NaN     no NaN      NaN       no NaN      NaN
               (100,)  (1000,1000)(1000,1000)(1000,1000)(1000,1000)
               axis=0     axis=0     axis=0     axis=1     axis=1
nansum         29.7        1.4        1.6        2.0        2.1
nanmean        99.0        2.0        1.8        3.2        2.5
nanstd        145.6        1.8        1.8        2.7        2.5
nanvar        138.4        1.8        1.8        2.8        2.5
nanmin         27.6        0.5        1.7        0.7        2.4
nanmax         26.6        0.6        1.6        0.7        2.5
median        120.6        1.3        4.9        1.1        5.7
nanmedian     117.8        5.0        5.7        4.8        5.5
ss             13.2        1.2        1.3        1.5        1.5
nanargmin      66.8        5.5        4.8        3.5        7.1
nanargmax      57.6        2.9        5.1        2.5        5.3
anynan         10.2        0.3       52.3        0.8       41.6
allnan         15.1      196.0      156.3      135.8      111.2
rankdata       45.9        1.2        1.2        2.1        2.1
nanrankdata    50.5        1.4        1.3        2.4        2.3
partition       3.3        1.1        1.6        1.0        1.5
argpartition    3.4        1.2        1.5        1.1        1.6
replace         9.0        1.5        1.5        1.5        1.5
push         1565.6        5.9        7.0       13.0       10.9
move_sum     2159.3       31.1       83.6      186.9      182.5
move_mean    6264.3       66.2      111.9      361.1      246.5
move_std     8653.6       86.5      163.7      232.0      317.7
move_var     8856.0       96.3      171.6      267.9      332.9
move_min     1186.6       13.4       30.9       23.5       45.0
move_max     1188.0       14.6       29.9       23.5       46.0
move_argmin  2568.3       33.3       61.0       49.2       86.8
move_argmax  2475.8       30.9       58.6       45.0       82.8
move_median  2236.9      153.9      151.4      171.3      166.9
move_rank     847.1        1.2        1.4        2.3        2.6

You can also run a detailed benchmark for a single function using, for example, the command:

>>> bn.bench_detailed("move_median", fraction_nan=0.3)

Only arrays with data type (dtype) int32, int64, float32, and float64 are accelerated. All other dtypes result in calls to slower, unaccelerated functions. In the rare case of a byte-swapped input array (e.g. a big-endian array on a little-endian operating system) the function will not be accelerated regardless of dtype.

Where

download

https://pypi.python.org/pypi/Bottleneck

docs

https://bottleneck.readthedocs.io

code

https://github.com/pydata/bottleneck

mailing list

https://groups.google.com/group/bottle-neck

License

Bottleneck is distributed under a Simplified BSD license. See the LICENSE file and LICENSES directory for details.

Install

Requirements:

Bottleneck

Python 2.7, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11; NumPy 1.16.0+

Compile

gcc, clang, MinGW or MSVC

Unit tests

pytest

Documentation

sphinx, numpydoc

To install Bottleneck on Linux, Mac OS X, et al.:

$ pip install .

To install bottleneck on Windows, first install MinGW and add it to your system path. Then install Bottleneck with the command:

$ python setup.py install --compiler=mingw32

Alternatively, you can use the Windows binaries created by Christoph Gohlke: http://www.lfd.uci.edu/~gohlke/pythonlibs/#bottleneck

Unit tests

After you have installed Bottleneck, run the suite of unit tests:

In [1]: import bottleneck as bn

In [2]: bn.test()
============================= test session starts =============================
platform linux -- Python 3.7.4, pytest-4.3.1, py-1.8.0, pluggy-0.12.0
hypothesis profile 'default' -> database=DirectoryBasedExampleDatabase('/home/chris/code/bottleneck/.hypothesis/examples')
rootdir: /home/chris/code/bottleneck, inifile: setup.cfg
plugins: openfiles-0.3.2, remotedata-0.3.2, doctestplus-0.3.0, mock-1.10.4, forked-1.0.2, cov-2.7.1, hypothesis-4.32.2, xdist-1.26.1, arraydiff-0.3
collected 190 items

bottleneck/tests/input_modification_test.py ........................... [ 14%]
..                                                                      [ 15%]
bottleneck/tests/list_input_test.py .............................       [ 30%]
bottleneck/tests/move_test.py .................................         [ 47%]
bottleneck/tests/nonreduce_axis_test.py ....................            [ 58%]
bottleneck/tests/nonreduce_test.py ..........                           [ 63%]
bottleneck/tests/reduce_test.py ....................................... [ 84%]
............                                                            [ 90%]
bottleneck/tests/scalar_input_test.py ..................                [100%]

========================= 190 passed in 46.42 seconds =========================
Out[2]: True

If developing in the git repo, simply run py.test

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bottleneck-1.4.2rc1.tar.gz (103.6 kB view details)

Uploaded Source

Built Distributions

Bottleneck-1.4.2rc1-cp313-cp313-win_amd64.whl (111.8 kB view details)

Uploaded CPython 3.13 Windows x86-64

Bottleneck-1.4.2rc1-cp313-cp313-win32.whl (107.2 kB view details)

Uploaded CPython 3.13 Windows x86

Bottleneck-1.4.2rc1-cp313-cp313-musllinux_1_2_x86_64.whl (362.1 kB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

Bottleneck-1.4.2rc1-cp313-cp313-musllinux_1_2_i686.whl (370.7 kB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ i686

Bottleneck-1.4.2rc1-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (361.9 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.4.2rc1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (365.5 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Bottleneck-1.4.2rc1-cp313-cp313-macosx_11_0_arm64.whl (98.7 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

Bottleneck-1.4.2rc1-cp312-cp312-win_amd64.whl (111.8 kB view details)

Uploaded CPython 3.12 Windows x86-64

Bottleneck-1.4.2rc1-cp312-cp312-win32.whl (107.2 kB view details)

Uploaded CPython 3.12 Windows x86

Bottleneck-1.4.2rc1-cp312-cp312-musllinux_1_2_x86_64.whl (361.8 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

Bottleneck-1.4.2rc1-cp312-cp312-musllinux_1_2_i686.whl (370.4 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

Bottleneck-1.4.2rc1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (361.9 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.4.2rc1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (365.5 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Bottleneck-1.4.2rc1-cp312-cp312-macosx_11_0_arm64.whl (98.7 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

Bottleneck-1.4.2rc1-cp311-cp311-win_amd64.whl (111.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

Bottleneck-1.4.2rc1-cp311-cp311-win32.whl (107.0 kB view details)

Uploaded CPython 3.11 Windows x86

Bottleneck-1.4.2rc1-cp311-cp311-musllinux_1_2_x86_64.whl (360.3 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

Bottleneck-1.4.2rc1-cp311-cp311-musllinux_1_2_i686.whl (369.6 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

Bottleneck-1.4.2rc1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (360.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.4.2rc1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (365.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Bottleneck-1.4.2rc1-cp311-cp311-macosx_11_0_arm64.whl (98.6 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

Bottleneck-1.4.2rc1-cp310-cp310-win_amd64.whl (111.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

Bottleneck-1.4.2rc1-cp310-cp310-win32.whl (107.0 kB view details)

Uploaded CPython 3.10 Windows x86

Bottleneck-1.4.2rc1-cp310-cp310-musllinux_1_2_x86_64.whl (356.1 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

Bottleneck-1.4.2rc1-cp310-cp310-musllinux_1_2_i686.whl (365.3 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

Bottleneck-1.4.2rc1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (356.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.4.2rc1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (360.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Bottleneck-1.4.2rc1-cp310-cp310-macosx_11_0_arm64.whl (98.6 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

Bottleneck-1.4.2rc1-cp39-cp39-win_amd64.whl (111.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

Bottleneck-1.4.2rc1-cp39-cp39-win32.whl (107.0 kB view details)

Uploaded CPython 3.9 Windows x86

Bottleneck-1.4.2rc1-cp39-cp39-musllinux_1_2_x86_64.whl (355.4 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

Bottleneck-1.4.2rc1-cp39-cp39-musllinux_1_2_i686.whl (364.5 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

Bottleneck-1.4.2rc1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (355.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Bottleneck-1.4.2rc1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (359.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Bottleneck-1.4.2rc1-cp39-cp39-macosx_11_0_arm64.whl (98.6 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

File details

Details for the file bottleneck-1.4.2rc1.tar.gz.

File metadata

  • Download URL: bottleneck-1.4.2rc1.tar.gz
  • Upload date:
  • Size: 103.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for bottleneck-1.4.2rc1.tar.gz
Algorithm Hash digest
SHA256 1420a8ae73ba9a9f2d32a794cced5fbf46c4086ddfbae6db7c51d5dbd99b8a87
MD5 ada497076055b7e3abc3f1587e6871ea
BLAKE2b-256 f2d840cf752edad00d73898636a9582fb6edf771699f46e7641131fce8e9a0e7

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 fb677cc7aa7b993255073ff027292eb39b65baf14a90690a048405c7ccc2563f
MD5 a5ac7672f8c3cf7e25ff60dab78a2b8a
BLAKE2b-256 8b2907a1784904bec16a8acfe824fbd437ab1f88ba9b81c56c522e0370af3d81

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp313-cp313-win32.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 ccec7303d6f68bbb11365f2560ff6df2d2ac3ae1a687fa2184e46c65e4432aa3
MD5 45e1c357de25232233403ae6a33dea2b
BLAKE2b-256 21545f2ef6cef630507a66e9985e8182be362473d43ba0d2ca1972493bc7b638

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 3b4c12fea68a6360390d51926f8a2af467691d21d2a2c18779f86afbe0b86748
MD5 4567b052239cee32602b509715cbcf56
BLAKE2b-256 7a6dff91e470247d6b4d19ac0721c8613ac5681f10afd7540f7224a95dd685fa

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 568b5fa0c41cadad24f4b47563b1eadcd08d2daeb615bddaaca159f4b8fe84fa
MD5 1fc2deeece516241bacc631d91b4cfd8
BLAKE2b-256 4914c0a66dd410a3218a3748cf68303a1dcf76f9123c5f9d7140384bc5cb4254

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4f21ea679f709f599b4aa62e210356e0c5dbe30363967a702762ac28fa93dc9e
MD5 e488e0bc3e1b4aa9090b6b749e2d4eb8
BLAKE2b-256 5b3510fc4f867ce2d248c4ac850de13a5eea40e02328acdcc62c1ef61c5e654c

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d8fdc948b7ba422b731f79d4c1881cb0ed97f29fe816685e4a5709286ae2bc46
MD5 c07f003bef5fe7306643d3efdf9477fe
BLAKE2b-256 48e1e48894c8254823c395f562765b0b243f3287a45a6c12a366dbe1b7f85882

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 df3d849e6d5c290b1accee357688288754fe9bc8c4040e491fca35667f76207b
MD5 92114d4c4d494e6cbad437baad857ba2
BLAKE2b-256 3f4d4eacd084c70904c89f05f2ea4fa661d8107c70be7dda00b2bb4cd313d2e5

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 b3e5185af8e8c9c9ed080933116334b64fe6e3df87a5b82716bd3e35b92a6fb3
MD5 d8268e5d1e26d2ec756c4f336bdee9a8
BLAKE2b-256 6ff926cf8aeadbc6adecc684e9556c3665bce893448de25e95f9edb134bb9011

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 3e520f7d1134111756b78b105834a82fd16f0e497edda9f0f26674162c3032f8
MD5 c288e7cbd2e7afa11a55c10df6b2f208
BLAKE2b-256 a826a118f5b912d1977e3055d6f3caa578fb6571320ebcd338c1b5b24fa0b31e

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9d542b14e87742ddd1bf243830618cc8829e51dc31e3976e3ffba19a74e53d96
MD5 0930c06e2a069cb523262727f4b68b8c
BLAKE2b-256 ae60d459ad7dc4da6163ad43dac67e8e6c40a52a567cbbf8cb322a0e64febfd5

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 450d55434073ed1ffbb74da22d185531243f6760b7108b003bd4f6b4ed64f12d
MD5 1d4db58123561f2587a6e7786f636a63
BLAKE2b-256 78dc6f38989613d8781c3c7a4fc57d13789de6fccd6d279a2615a2c395ce275c

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c2143d2be147b3a39266c97e9a5d71d279b7c3ce5f645b89837ed34d424f04fc
MD5 f256b1333b29243386123b4575cbea65
BLAKE2b-256 149aaa29a85b14b425a37ae135b743d5d90865b2f236ebd55ffbeed91c599be4

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4f47c513100feac44f3880b385ed4e42bcbecce21a38623a339654440c5737f6
MD5 19b919aa4d7271843a204fea4647530c
BLAKE2b-256 8f17d8e2564103f414f1b5f8025d1b6b5fc57dd78141656c4800382a6c5cd378

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c0c01f0ef3e2bd1b68946fc8cbf7054675a35ce0bc1a9cf56e4b7be431e6c056
MD5 709388ace2880e7f19b30c70caf19fb6
BLAKE2b-256 0f244796982acae8595170589d8417da85fc461a8c223ad258525cf165f11917

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 190fd6984bf97e497e62e78b3d7556259979ad27e7d26d451da69f39651adb3f
MD5 9cd3d1b856360bba8aae863d9287c790
BLAKE2b-256 ad4e50963314fdd0ef2ec7ead7af6bf127283b0a7b1d9131fe09b0f69eddd43d

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 718c830100e35554b7c56c2df5944a871361fadd7d399bb13ae7be8b31434a63
MD5 99ef2231d4c38b38dd24c892988fc9a9
BLAKE2b-256 d999721920e20f1da088076e036908267ff0a58c73ccd6b38d78581c3422a395

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b393f11f7a5772453a41753b49ef34d5cafad5a0b8801dec5ba4f6f3653c6c77
MD5 c04e896bc9d6b80b104bac193714ca9a
BLAKE2b-256 1fc317b82e6637c0396e9b754c17908e40f48224df02f236b22ee7a48f35e7e2

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 18cd5af6620bbcbc9931e32c2405a39aebdc2b20f2425ca3481f40177e7f52d8
MD5 f5ba1c08d73ea9d2f19991a96968a560
BLAKE2b-256 a879a25b71f8698f7d30a38773e0bf2841cc215e22f98054539bbb75629d9029

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3194edc8ef6c3f319aa4f897a96a008b5d97141d5821216bf92932a78a1f6fc6
MD5 9033e715a91001c6531716ec375df619
BLAKE2b-256 884cb38a860da223835e495a0bfe58d8e3135eda9f10d78326301ccae422a1ee

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0be8909d9769fdebdc7cf6a79c1b880cc39a2638c12b28808bcb6e07e83dd88c
MD5 f09e06f355615854593fc0d1501f892d
BLAKE2b-256 b05a39777811a86ae43ccbf3c2f1730799cb0ca41b2a31fee0606992f2124e12

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2d54aad92e32cf609bede230f101bf4dbf0e6a9e9df7a2eea9e514fe7887e448
MD5 976703967b3a9cca160cd368ea8212fb
BLAKE2b-256 8da8b444634413b37e6827f4de01a28218d2b4e36783e7a1486d4c7b36b537e2

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 bd578eb682ccbb2b4184ff309d1ac1ad553e0b749d1ca1bfd19a624f5fd6129a
MD5 65a4cabe7505d42dc29514019e2fc0f8
BLAKE2b-256 26337858c31c42cf9382ea037eb6c6c6b79e238d0a9dfe2c78be89350fa06ba4

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 079db1d0a08060d6db250ab55428ceb4d5499624779fc3ef1f7b7bd7ac73cd61
MD5 86dee61512c377b455066ef71838a63e
BLAKE2b-256 e72699d0059537e3c08d2d8b0c34dc63587e005261091432b422e0989b147008

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 79e6ddae1494a17f6515f2ae94bf442c9b25502ab56fff09ab0a1efc054402f3
MD5 3df8bc041631a314a57e82f81320642f
BLAKE2b-256 5f4304e087e579d9b4618595fb06229e4ffeb255f32ce3144c391c6f55c127dd

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 f5b86cbff7e9818ef37f9f577798fd9782584580828a18467e19962246fc1790
MD5 030d885fa2c46caa3a3007e2b7d688e6
BLAKE2b-256 5423236d382f26ca5b459a3a81cbda90b78d39910721d986630156abfdaa5a35

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7c0d394b1c820d2eea0f1067614ee05306c4171b3d0aea1c9faa8798c4389213
MD5 7462bae82d8f4e7a4807a7fdf9c4ace9
BLAKE2b-256 e88d2905feef6db43c269ea6548b97d2cf3110217aff2a4f9a043d3803c1d302

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8e019b4b202cd8c17536dcf72cfaaabf4b90638f37b641c7e3970acc76365aff
MD5 cc2c436e5e943c36bffea6ff0ea24256
BLAKE2b-256 130e58df293b36ad77fc465baab5403ab873ca4bc3b8c001be21ae8643aa1cb3

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 643c1013ad8617219e3730e79bfba955c51a9861ecf9338dc13432e1bd14d78e
MD5 5ec8efdbea588cb198a69a4cfdfd8d21
BLAKE2b-256 70c9dc8482c35db060ffd81c7ee7700fb55047f13612c0a81d33b0c81a7907f2

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a32eae9cf29a5ea9559e6489bed6c4542450046599bc7d91e7385de3f65ef57e
MD5 52745ac14267c73c25074ae3a94956cc
BLAKE2b-256 7bb6aef5ad809ea09a26c04599828e4588c8917b011bf86b7d507ccddb66c5c8

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp39-cp39-win32.whl.

File metadata

  • Download URL: Bottleneck-1.4.2rc1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 107.0 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for Bottleneck-1.4.2rc1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 cccce12d31b75373bd9abbc74991739a5202a8e9ac9c5374d4b6cc76597e5718
MD5 1e473a86cab051004e3b105ff9a39588
BLAKE2b-256 08cfcece3c3b7815f2e43434aba44911aeaa905e46cb0d382d93b16d7b2e234f

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 09988adda37f16a58106a8d246dc0fca6a97019897b135dc8c06983e449a4d5a
MD5 0c553d1763e46d592a78fc22f5347003
BLAKE2b-256 2bf44fba54b789bbaecec51b062493ca9ebef42ec3cdd7238f51499d7f3aff10

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 483b8bb5dadf033ac839d10a7c4c1036d0aa2e05fd343441fb1dde517484fe04
MD5 c1096a31fcc2243644b766d288f5bd65
BLAKE2b-256 e2bba3575b796b8fd073eeef4df2f610af701d9179ad27995b4257d8d3f81713

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9695188273a2bc80d13367031ea4d2414282623c202af8e37fa1a961fba127d8
MD5 ebf8d23d00571b1d3267c230b7cf04c4
BLAKE2b-256 24b6def537eeabc017e100f9ffb3b340b071a7765d0900140d4370334296a808

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8d9beb73360f583421cd74a5941884611124d2c188fa590a385820efcd9a3f22
MD5 d52d06e0aca14608c433f183999d1494
BLAKE2b-256 1d53ed3c82c9f3ea14dbe722c46dccbbe55eedf97f6818fd302c66311bc81776

See more details on using hashes here.

Provenance

File details

Details for the file Bottleneck-1.4.2rc1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for Bottleneck-1.4.2rc1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dcb75d31c4fe962c2648a537eaa26838cc58ebcaac680ed51d2cf8afda9d90cd
MD5 fb4ee7cdfb9e41058b350929942fa598
BLAKE2b-256 19e090d3c888a72dcddc6305be07cd9b6811ce3d05664fe34ea9a84c9c7480ab

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page