This library implements Kreiss-Lopatinskii determinant for numerical scheme with boundary
Project description
This is the architecture for the package "boundaryscheme" : https://pypi.org/project/boundaryscheme/
boundaryscheme
Package Python to use numerical scheme with boundaries which is described in the PhD manuscript
P. Le Barbenchon, Étude théorique et numérique de la stabilité GKS pour des schémas d'ordre élevé en présence de bords, PhD, 2023.
Package documentation
https://plebarbenchon.github.io/boundaryscheme
Easy installation for the PyPI version
pip install boundaryscheme
Installation for the GitHub version
git clone https://github.com/PLeBarbenchon/boundaryscheme.git
cd boundaryscheme
pip3 install -r requirements.txt
pip3 install -e .
python3 examples/draw_detKLcurve.py
Example
import matplotlib.pyplot as plt
from boundaryscheme.schemes import BeamWarming
from boundaryscheme.boundaries import SILW
import boundaryscheme.pyplot as bsplt
bsplt.detKLcurve(BeamWarming, SILW(2,3),lambdacursor = True)
plt.show()
Creation of a scheme
To compute the scheme $U_{j}^{n+1} = \dfrac{1}{3}U_{j-1}^n + U_j^n -\dfrac{1}{6} U_{j+1}^n - \dfrac{1}{6}U_{j+2}^n$ with a boundary $B$, write
S = Scheme([1/3,1,-1/6,-1/6],1, B)
To compute the scheme depending on a parameter $\lambda$, create a Python class using the following formulation:
class Name(Scheme):
"""This is a class to represent ...
:param lamb: The Courant number, i.e a.dt/dx where "a" is the velocity, "dt" the time discretization and "dx" the space discretization
:type lamb: float
:param boundary: Boundary condition, defaults to Dirichlet()
:type boundary: class:`Boundary`, optional
:param sigma: Gap between the mesh and the boundary condition, defaults to 0
:type sigma: float, optional
"""
def __init__(self, lamb, boundary=Dirichlet(), sigma=0, **kwargs):
"""Constructor method"""
self.sigma = sigma
self.lamb = lamb
self.inter = #write the list of the coefficients of the scheme
self.center = #write the index of the center of the scheme
self.CFL = #give the CFL condition
super().__init__(inter=self.inter, center=self.center, boundary=boundary, sigma=sigma, **kwargs)
def shortname(self):
"""Name method"""
return "Name"
For example, to compute the scheme $U_{j}^{n+1} = \dfrac{\lambda}{3}U_{j-1}^n + \lambda^2 U_j^n -\dfrac{1}{6} U_{j+1}^n - \dfrac{\lambda}{6}U_{j+2}^n$ with a boundary $B$, write
class Name(Scheme):
def __init__(self, lamb, boundary=Dirichlet(), sigma=0, **kwargs):
self.sigma = sigma
self.lamb = lamb
self.inter = [lamb/3, lamb**2, -1/6, -lamb/6]
self.center = 1
self.CFL = #give the CFL condition
super().__init__(inter=self.inter, center=self.center, boundary=boundary, sigma=sigma, **kwargs)
def shortname(self):
"""Name method"""
return "Name"
Citing
The code is citable via Zenodo. Please cite as:
P. Le Barbenchon, boundaryscheme: package Python for numerical schemes with boundaries. 2023.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file boundaryscheme-2.4.tar.gz
.
File metadata
- Download URL: boundaryscheme-2.4.tar.gz
- Upload date:
- Size: 15.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c4e688303def3c04b3f01ecadb7d8bef252778e34701d79932b4fd8a26885f0d |
|
MD5 | c2fdaeeb99753b8ce3bbd18b68432bd7 |
|
BLAKE2b-256 | 773a47f773af8a555ff8778c4d7ebdfc11a337d4df469e8a1836af15592d2534 |
File details
Details for the file boundaryscheme-2.4-py2-none-any.whl
.
File metadata
- Download URL: boundaryscheme-2.4-py2-none-any.whl
- Upload date:
- Size: 20.4 kB
- Tags: Python 2
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6cd353c4797278e0fbf9411690da45a0249d6c83d00d5024277c747da880298b |
|
MD5 | 02978ebd6a8abe4c830a641c6ee987f8 |
|
BLAKE2b-256 | 5fd853986d7b658e2d635b23efc7e1e93ecdf2ed7a27d82a9d18c2bd77e7f275 |