Skip to main content

Bovespa's historical series files parser.

Project description

bovespaParser
=============
A Python parser for BM&F Bovespa Historical Series Files


### Features:
- Parses COTAHISTXXXX.TXT files
- Parses data passed as string array
- Configurable to retrieve specific data:
* Contains market type filters (VISTA, OPCOES, ...)
* Accepts configuration of desired data fields to be retrieved
* Data fields order can be freely specified

### Installing:
pip install bovespaparser
There are no external dependencies.

### Usage
#### Getting started
In the sample code presented bellow, you can check out how to parse a file and print it's data out:
```python
import bovespaparser.bovespaparser as bvparser

with open('filename', 'rU') as f:
result = bvparser.parsedata(f)

print result
```

The results returned by the `parsedata` function consists of a list of lists: a list of records, where a record holds some information-data for a stock paper in a certain day (a line on the given file).

The `parsedata` function has two optional parameters:
```python
def parsedata(data, opts=[CODNEG, DATA, PREABE, PREMIN, PREMAX, PREULT, QUATOT], market=VISTA):
# implementation ...
```
- **opts** parameter: specifies what information should be retrieved for each stock paper tick;
- **market** parameter: specifies the desired market data (filters out other markets)

Calling the function (using the default parameters) would then return a list of records holding:
- **symbol** - the stock symbol (str)
- **date** - the period of the quotation tick (datetime.datetime)
- **open** - stock tick open value (float)
- **min** - stock tick min value (float)
- **max** - stock tick max value (float)
- **close** - stock tick close value (float)
- **volume** - the volume in the period (int)

So, it easy to analyse results:
```python
for symbol, datetime, f_open, f_min, f_max, f_close, volume in results:
# process data ...
```

To find out more about the available parameter options and its meanings, refer to the official BMFBOVESPA documentation (also present on the docs directory).

#### Importing data into pandas
Bellow, a (not so pretty/optimized) example of how to import data from a file and creating `pandas dataframes` for each stock symbol:
```python
# -*- coding: utf-8 -*-


import pandas
import collections
import bovespaparser.bovespaparser as bvparser


class CotahistImporter(object):

def __init__(self, f):
self.dataFrameMap = {}

dataMap = collections.defaultdict(list)
mapping = [("open", 1), ("high", 2), ("low", 3), ("close", 4), ("volume", 5)]

for symbol, datetime, openv, minv, maxv, close, volume in bvparser.parsedata(f):
symbolData = dataMap.get(symbol)
symbolData.append([datetime, openv, maxv, minv, close, volume])

for symbol in dataMap.keys():
dataMap.get(symbol).sort()
data = zip(*dataMap.get(symbol))
timeseries = dict((column_name, pandas.TimeSeries(data[column_index], index=data[0], name=column_name)) for column_name, column_index in mapping)
self.dataFrameMap[symbol] = pandas.DataFrame(timeseries, columns=['open', 'high', 'low', 'close', 'volume'])

def getDataFrameMap(self):
return self.dataFrameMap
```

### Links:
- [BovespaParser Annoucment Blog Post](http://how.i.drycode.it/2012/09/python-bovespa-parser.html)
- [BovespaParser Git Repository]( https://github.com/rhlobo/bovespaParser)
- [Documentation](http://www.bmfbovespa.com.br/shared/iframe.aspx?idioma=pt-br&url=http://www.bmfbovespa.com.br/pt-br/cotacoes-historicas/FormSeriesHistoricas.asp)
(for Bovespa's Historical Series data files)

---------------------------------------
### Any feedback is always appreciated!
- Write to the author: <rhlobo+stockExperiments@gmail.com>

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bovespaparser-0.6.5.tar.gz (4.3 kB view details)

Uploaded Source

Built Distribution

bovespaparser-0.6.5-py3-none-any.whl (4.5 kB view details)

Uploaded Python 3

File details

Details for the file bovespaparser-0.6.5.tar.gz.

File metadata

File hashes

Hashes for bovespaparser-0.6.5.tar.gz
Algorithm Hash digest
SHA256 235592bf677cf9527c5d7abe07f4aef3f88bd175af521ac7b2fb717ad869127c
MD5 89c657e7685edf54e579bccaed9af332
BLAKE2b-256 57fbf6e440d9ff3c17cbec9fd31ad0c5517e483f298104c0a30092b31643c8e3

See more details on using hashes here.

File details

Details for the file bovespaparser-0.6.5-py3-none-any.whl.

File metadata

  • Download URL: bovespaparser-0.6.5-py3-none-any.whl
  • Upload date:
  • Size: 4.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for bovespaparser-0.6.5-py3-none-any.whl
Algorithm Hash digest
SHA256 db38d2fb57479adb2bb43381c3292d51be087860862a253178acb1dc1ae42141
MD5 9484f026f9b635b3b4c84ae7920d1792
BLAKE2b-256 6ceaebfcced20eb84780b0945dcdaef854d45d6cb7a6b1bd47dd6b96d134349a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page