Pytorch and Tensorflow implemention of box embedding models
Project description
Open-source library for Box Embeddings and Box Representations, built on PyTorch & TensorFlow.
Status
Installation
Installing via pip
The preferred way to install Box Embeddings is via pip
. Just run pip install box-embeddings
Installing from source
You can also install Box Embeddings by cloning our git repository
git clone https://github.com/iesl/box-embeddings
Create a Python 3.7 or 3.8 virtual environment, and install Box Embeddings in editable mode by running:
pip install --editable . --user
pip install -r core_requirements.txt
Package Overview
Command | Description |
---|---|
box_embeddings |
An open-source library for NLP or graph learning |
box_embeddings.common |
Utility modules that are used across the library |
box_embeddings.initializations |
Initialization modules |
box_embeddings.modules |
A collection of modules to operate on boxes |
box_embeddings.parameterizations |
A collection of modules to parameterize boxes |
Citing
- If you use simple hard boxes with surrogate loss then cite the following paper:
@inproceedings{vilnis2018probabilistic,
title={Probabilistic Embedding of Knowledge Graphs with Box Lattice Measures},
author={Vilnis, Luke and Li, Xiang and Murty, Shikhar and McCallum, Andrew},
booktitle={Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers)},
pages={263--272},
year={2018}
}
- If you use softboxes without any regularizaton the cite the following paper:
@inproceedings{
li2018smoothing,
title={Smoothing the Geometry of Probabilistic Box Embeddings},
author={Xiang Li and Luke Vilnis and Dongxu Zhang and Michael Boratko and Andrew McCallum},
booktitle={International Conference on Learning Representations},
year={2019},
url={https://openreview.net/forum?id=H1xSNiRcF7},
}
- If you use softboxes with regularizations defined in the
Regularizations
module then cite the following paper:
@inproceedings{
patel2020representing,
title={Representing Joint Hierarchies with Box Embeddings},
author={Dhruvesh Patel and Shib Sankar Dasgupta and Michael Boratko and Xiang Li and Luke Vilnis
and Andrew McCallum},
booktitle={Automated Knowledge Base Construction},
year={2020},
url={https://openreview.net/forum?id=J246NSqR_l}
}
- If you use Gumbel box then cite the following paper:
@article{dasgupta2020improving,
title={Improving Local Identifiability in Probabilistic Box Embeddings},
author={Dasgupta, Shib Sankar and Boratko, Michael and Zhang, Dongxu and Vilnis, Luke
and Li, Xiang Lorraine and McCallum, Andrew},
journal={arXiv preprint arXiv:2010.04831},
year={2020}
}
The code for this library can be found here.
Contributors
-
Dhruvesh Patel @dhruvdcoder
-
Shib Sankar Dasgupta @ssdasgupta
-
Michael Boratko @mboratko
-
Xiang (Lorraine) Li @Lorraine333
-
Trang Tran @trangtran72
-
Purujit Goyal @purujitgoyal
-
Tejas Chheda @tejas4888
Contributions
We welcome all contributions from the community to make Box Embeddings a better package. If you're a first time contributor, we recommend you start by reading our CONTRIBUTING.md guide.
Team
Box Embeddings is an open-source project developed by the research team from the Information Extraction and Synthesis Laboratory at the College of Information and Computer Sciences (UMass Amherst).
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file box_embeddings-0.1.0.tar.gz
.
File metadata
- Download URL: box_embeddings-0.1.0.tar.gz
- Upload date:
- Size: 31.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 51680c9dbfa2fc09fcfb48d5b43b2fc0b6fafad96b1057c3acff7a81855fcf65 |
|
MD5 | 7ef4fa3c862b089adb3ee53791eec6f4 |
|
BLAKE2b-256 | 3e8f48feb68c2db5e8a988a16098036f037ff394a9615e6cd50a0d04e2cf3538 |
File details
Details for the file box_embeddings-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: box_embeddings-0.1.0-py3-none-any.whl
- Upload date:
- Size: 61.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c18ae1ca4b88c7841ddad253667b22dfee60a20ea5bea4fc355434288e195185 |
|
MD5 | 9c9d5a8d650ff16208f41fd2eff315ec |
|
BLAKE2b-256 | 41fb554b5772e08939cdc93b89dec42401895a06749bd35a36663ec2987c7f0c |