Skip to main content

Quantification of reads at defined positions to verify custom input sequences. Given a gene fusion or splicing junction of interest, this tool can quantify RNA-seq reads supporting the breakpoint (or splice junction) by quantifying reads that map to the breakpoint (junction reads) and read pairs that span the breakpoint (spanning pairs).

Project description

EasyQuant (bp-quant)

Quantification of reads at defined positions to verify custom input sequences.

EasyQuant takes target sequence with defined positions or regions as input (e.g., breakpoints, splice junctions, retained introns) and quantifies supporting RNA-seq reads by reporting the number of overlapping reads (junction reads) and read pairs spanning the position or region (spanning pairs).

Workflow

  • Input:
    • Target sequences and positions of interest (CSV/TSV format)
    • FASTQ files or BAM file
  • Convert target sequences to FASTA format (bp_quant csv2fasta)
  • Map reads against sequences using STAR/Bowtie2
    • Generate index of sequences as reference (bp_quant index)
    • Map reads (bp_quant align)
  • Count supporting reads using bp_quant count
  • Output:
    • Table with read counts per input sequence

Installation

Dependencies

Python and packages defined in the conda environment.yml

# Build conda environment or add the dependencies to your path
conda env create -f environment.yml -n easyquant_env
conda activate easyquant_env

Install from PyPi

pip install bp-quant

Install from GitHub

git clone https://github.com/TRON-Bioinformatics/easyquant.git
cd easyquant

python -m build
pip install dist/*.whl

Usage

usage: bp_quant pipeline [-h] [-1 FQ1] [-2 FQ2] [-b BAM] -s SEQ_TAB -o OUTPUT_FOLDER [-d BP_DISTANCE] [--allow_mismatches] [--interval_mode] [--skip_singleton]
                         [-m {star,bowtie2}] [-t NUM_THREADS] [--alignment_params ALIGN_PARAMS] [--keep_aln | --keep_all]

Runs the complete bpquant pipeline

optional arguments:
  -h, --help            show this help message and exit
  -1 FQ1, --fq1 FQ1     Specify path to Read 1 (R1) FASTQ file
  -2 FQ2, --fq2 FQ2     Specify path to Read 2 (R2) FASTQ file
  -b BAM, --bam_file BAM
                        Specify path to input BAM file as alternative to FASTQ input
  -s SEQ_TAB, --sequence_tab SEQ_TAB
                        Specify the reference sequences as table with colums name, sequence, and position
  -o OUTPUT_FOLDER, --output_folder OUTPUT_FOLDER
                        Specify the folder to save the results into.
  -d BP_DISTANCE, --bp_distance BP_DISTANCE
                        Threshold in base pairs for the required overlap size of reads on both sides of the breakpoint for junction/spanning read counting
  --allow_mismatches    Allow mismatches within the region around the breakpoint determined by the bp_distance parameter
  --interval_mode       Specify if interval mode shall be used
  --skip_singleton      Skip singleton alignments in requantification
  -m {star,bowtie2}, --method {star,bowtie2}
                        Specify alignment software to generate the index
  -t NUM_THREADS, --threads NUM_THREADS
                        Specify number of threads to use for the alignment
  --alignment_params ALIGN_PARAMS
                        Specify custom commandline parameters to use for the alignment
  --keep_aln            Do not delete alignment files during clean up step
  --keep_all            Do not perform clean up step after re-quantification

Copyright (c) 2024 TRON gGmbH (See LICENSE for licensing details)

Note: For the quantification of splice junction sequences, we recommend performing the targeted alignment with strict parameters.

For bowtie2 we recommend the following additional alignment parameters: --alignment_params "--dpad 0 --gbar 99999999 --mp 1,1 --np 1 --score-min L,0,-0.01"

For STAR we recommend the following additional alignment parameters: --alignment_params "--outFilterMismatchNoverReadLmax 0.3 --scoreDelOpen -2 --scoreInsOpen -2 --scoreDelBase -2 --scoreInsBase -2"

Use case with example data

Here, we use toy example data from the folder example_data. It consists of a table with input sequences and positions, as well as two fastq files / one BAM file.

Example run with fastq files as input:

bp_quant pipeline \
  -1 example_data/example_rna-seq_R1_001.fastq.gz \
  -2 example_data/example_rna-seq_R1_001.fastq.gz \
  -s example_data/CLDN18_Context_seq.tsv \
  -d 10 \
  -o example_out \
  -m star \
  -t 6

Example run with BAM as input:

bp_quant pipeline \
  -b example_data/example_rna-seq.bam \
  -s example_data/CLDN18_Context_seq.tsv \
  -d 10 \
  -o example_out \
  -m star \
  -t 6

Input

Table with input sequences

The input target sequences should be provided as a Tab or ;-separated table with unique names and the relative (1-based) position of interest (breakpoint, junction) or interval of interest.

Example of an input table:

name sequence position
seq1 AACCGCCACCG 5
seq2 GTCCGTTGGCG 5
seq3 AACCGCCCTGT 5
seq4 CGGCATCATCG 0,5,10

Fastq files / BAM file

The sequencing data needs to be provided as paired-end fastq files or an unsorted BAM file (no multimappers).

Output format

The main output consists of the file <OUTPUT_FOLDER>/quantification.tsv. The table contains raw read counts for each input sequence. The output folder contains additional files, such as a table with mapping information of each mapped read (read_info.tsv.gz)

Columns in output file quantification.tsv

Without interval mode

  • name name of the input sequence
  • pos position of interest relative to input sequence
  • junc reads overlapping the position of interest
  • span read pairs spanning the position of interest
  • anch maximal number of bases next to position of interest that are overlaped by a single read
  • a reads mapping to sequence left of the position of interest
  • b reads mapping to sequence right of the position of interest

With interval mode

  • name name of the input sequence
  • interval interval of interest relative to input sequence
  • overlap_interval_end_reads reads overlapping the end of the interval by at least BP_DISTANCE bases
  • span_interval_end_pairs read pairs spanning the end of the interval
  • within_interval reads mapping fully onto the interval
  • coverage_perc percentual coverage of the interval by aligned reads
  • coverage_mean average coverage per base for the interval (fold coverage)
  • coverage_median median coverage per base for the interval

Example output

The output of the example run <OUTPUT_FOLDER>/quantification.tsv using a mismatch ratio of 0.05 (default) should look like this:

name pos junc span anch a b
CLDN18_1 400 670 0 0 4140 10994
CLDN18_2 361 32 0 0 36 10994
CLDN18_total 400 612 2 0 11334 14820
CLDN18_1_fake 400 0 0 0 4132 14818
CLDN18_2_fake 361 0 0 0 76 14818
HPRT1 400 76 0 0 1088 1332
HPRT1_dup 400 76 0 0 1088 1332
HPRT1_similar 400 76 0 0 1064 814

Using the interval mode (--interval_mode) the output will look like the following:

name interval overlap_interval_end_reads span_interval_end_pairs within_interval coverage_perc coverage_mean coverage_median
CLDN18_1 0_400 670 0 4140 0.0 0.0 0.0
CLDN18_1 400_786 0 0 10994 0.0 0.0 0.0
CLDN18_2 0_361 32 0 36 0.0 0.0 0.0
CLDN18_2 361_747 0 0 10994 0.0 0.0 0.0
CLDN18_total 0_400 612 2 11334 0.0 0.0 0.0
CLDN18_total 400_786 0 0 14820 0.0 0.0 0.0
CLDN18_1_fake 0_400 0 0 4132 0.0 0.0 0.0
CLDN18_1_fake 400_786 0 0 14818 0.0 0.0 0.0
CLDN18_2_fake 0_361 0 0 76 0.0 0.0 0.0
CLDN18_2_fake 361_747 0 0 14818 0.0 0.0 0.0
HPRT1 0_400 76 0 1088 0.0 0.0 0.0
HPRT1 400_793 0 0 1332 0.0 0.0 0.0
HPRT1_dup 0_400 76 0 1088 0.0 0.0 0.0
HPRT1_dup 400_793 0 0 1332 0.0 0.0 0.0
HPRT1_similar 0_400 76 0 1064 0.0 0.0 0.0
HPRT1_similar 400_793 0 0 814 0.0 0.0 0.0

Hint: This is just an example to illustrate the design of the table. The actual results may differ.

Things to consider

EasyQuant supports two aligners, which have several differences:

  • STAR:
    • end-to-end alignment with no soft-clipping
    • Slow for many or large reference sequences
    • several parameters to optimize alignments, which can be customized with --alignment_params
  • bowtie2:
    • end-to-end alignment might lead to insertions where the context sequence starts/ends
    • faster than STAR for short reference sequences (index creation parameters are calculated automatically)

License

This project is licensed under the MIT License - see the LICENSE file for details

References

If you use EasyQuant in your research, please cite the following publication:

Franziska Lang, Patrick Sorn, Martin Suchan, Alina Henrich, Christian Albrecht, Nina Köhl, Aline Beicht, Pablo Riesgo-Ferreiro, Christoph Holtsträter, Barbara Schrörs, David Weber, Martin Löwer, Ugur Sahin, Jonas Ibn-Salem, Prediction of tumor-specific splicing from somatic mutations as a source of neoantigen candidates, Bioinformatics Advances, Volume 4, Issue 1, 2024, vbae080, https://doi.org/10.1093/bioadv/vbae080

@article{10.1093/bioadv/vbae080,
    author = {Lang, Franziska and Sorn, Patrick and Suchan, Martin and Henrich, Alina and Albrecht, Christian and Köhl, Nina and Beicht, Aline and Riesgo-Ferreiro, Pablo and Holtsträter, Christoph and Schrörs, Barbara and Weber, David and Löwer, Martin and Sahin, Ugur and Ibn-Salem, Jonas},
    title = "{Prediction of tumor-specific splicing from somatic mutations as a source of neoantigen candidates}",
    journal = {Bioinformatics Advances},
    volume = {4},
    number = {1},
    pages = {vbae080},
    year = {2024},
    month = {05},
    issn = {2635-0041},
    doi = {10.1093/bioadv/vbae080},
    url = {https://doi.org/10.1093/bioadv/vbae080},
    eprint = {https://academic.oup.com/bioinformaticsadvances/article-pdf/4/1/vbae080/58192195/vbae080.pdf},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bp_quant-0.6.0.tar.gz (27.8 kB view details)

Uploaded Source

Built Distribution

bp_quant-0.6.0-py3-none-any.whl (29.9 kB view details)

Uploaded Python 3

File details

Details for the file bp_quant-0.6.0.tar.gz.

File metadata

  • Download URL: bp_quant-0.6.0.tar.gz
  • Upload date:
  • Size: 27.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.6

File hashes

Hashes for bp_quant-0.6.0.tar.gz
Algorithm Hash digest
SHA256 754948d9dbd2a59be9d7bba557e90b79c46ebcdfa29e3b9bd9cbf21479bd25ea
MD5 f5492257ebb808895ad51dcee4513cfe
BLAKE2b-256 b41a78bfcb052e245f660d188b0dc40a843078b7d9fef8805cf9b9815efdc048

See more details on using hashes here.

File details

Details for the file bp_quant-0.6.0-py3-none-any.whl.

File metadata

  • Download URL: bp_quant-0.6.0-py3-none-any.whl
  • Upload date:
  • Size: 29.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.6

File hashes

Hashes for bp_quant-0.6.0-py3-none-any.whl
Algorithm Hash digest
SHA256 19eda1ee71f83ad1e6439e6fd63019f7da7b14faa939abca7c7fbcc849fb6593
MD5 278599e39f1ccc5d4700e93df1a5221b
BLAKE2b-256 52ad185f738c4579e647b12da34a87c2e4168ce1daf327744dc18337eecbb6ec

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page