Skip to main content

Helper Library for various Dataset formats

Project description

BrainPlug Storage Library

Library to load, augment and different dataset formats for use in machine learning models.

Note: The repo is still work in progress, so documentation might not be up to date

Getting Started

Storage Library allows loading and augmentation in various data formats. It even allows to generate Tensorflow Tf-Records and load them (coming soon (TM)).

Simply install using (distribution via PyPi is planned):

pip3 install .

Currently the library has 4 parts:

  • storage.classification - Allows to load simple classification datasets
  • storage.kitti - Allows to load the kitti format for usage in detectors (3D Data not supported currently)
  • storage.beard - Allows to load beard format (format optimized for localization tasks)
  • storage.utils - Various helper functions

In general each data loader will create a python generator that can be used to loop over the data. Datasets in general are split into different types (defined in storage.utils.DataType):

  • TRAINING - Used for general training purposes
  • DEVELOPMENT - Used for validation and exploration during the development process (you will probably make certain assumptions about the structure of the dataset through this data)
  • VALIDATION - Final validation data used to measure the performance of the trained model and to validate your assumptions

These datatypes are added to the end of the enum and the creation functions also allow you to filter the dataset for certain types.

Examples

General Concepts

Each load function allows to resize the images through 3 parameters, which contain enums:

  • resize [storage.utils.ResizeMode] - Defines how the images are resized and if it should be padded
  • pad_mode [storage.utils.PadMode] - In case of padding defines if the image should be pinned to top left corner or centered
  • pad_color [Color Array] - Defines the color of the padding, if ResizeMode.PAD_COLOR is selected

Each load function also allows to specify the maximum size of the output image through size and if the dataset type (i.e. storage.utils.DataType) is provided for each element in the generator through show_btype. It also allows to filter only for a specific btype through the only argument, which expects a single or a list of multiple DataType.

Classification

This is the simples type of dataset:

import storage
from storage.utils import ResizeMode, DataType
# DEBUG: using cv2 for debug output
import cv2

# load the generator
classes, gen = storage.classification.load(folder, size=(512, 512), resize=ResizeMode.FIT, only=DataType.TRAINING, show_btype=True)

print("Found classes: {}".format(classes))

# DEBUG: show the output of the generator
for img, label, ds in gen:
  cv2.putText(img, label, (10, 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,0), 2)
  # show the result
  cv2.imshow("Storage Output", img)
  cv2.waitKey(0)

Kitti & Beard

The loading of kitti and beard data is quite similar (i.e. kitti uses the beard loader internally). Both function should have similar signatures. The only difference are:

  • beard_style parameter for kitti.load(), which switches between classic kitti format and beard generator style output.
  • classes parameter for kitti.load(), which allows to provide classes that deviate from default kitti classes (for beard, these are stored in the config file)

Therefore we will only look at beard loading here:

import storage
from storage.utils import ResizeMode, PadMode, DataType
# DEBUG: using cv2 for debug output
import cv2

# load the generator
config, gen = storage.beard.load(folder, only=DataType.DEVELOPMENT, size=(512, 512), resize=ResizeMode.PAD_COLOR, pad_color=(255, 255, 255), pad_mode=PadMode, show_btype=False)

# DEBUG: show the output of the generator
colors = storage.utils.get_spaced_colors(len(classes) + 1)[1:]
for img, gdata, mdata in gen:
  # note: gdata contains global image information (empty in kitti) and mdata hold classes and locations of objects
  # go through all elements
  for item in mdata:
    # highlight bbs
    if storage.utils.const.ITEM_BBOX in item:
      # retrieve the boxes
      coords = item[storage.utils.const.ITEM_BBOX]
      cls = item[storage.utils.const.ITEM_CLASS]

      # draw the bounding box
      cv2.rectangle(img, (coords[0], coords[1]), (coords[2], coords[3]), colors[cls], 2)
      cv2.putText(img, cls,(coords[0], coords[3] + 10), cv2.FONT_HERSHEY_SIMPLEX, 0.4, colors[cls], 1, cv2.LINE_AA)

  # show the result
  cv2.imshow("Storage Output", img)
  cv2.waitKey(0)

For additional insights take a look at the scripts folder.

NOTE: In the default case the class attribute stored in item for kitti data is named type and not class (as stored in storage.utils.const.ITEM_CLASS)

Dataset structures

Beard and Kitti structures are described in separate documents. Classification expects a simple structure. Like in beard data is split into multiple folders for the datatype (train, val, dev). Each folder contains a subfolder for each class that should be classified (e.g. cat and dog). These subfolders then contain the actual images.

Dependencies

  • lycon or cv2 - for fast loading of images and resizing (pip install lycon, however there seems not to be real windows support at the moment) [NOTE: you can also use cv2 instead, the library will adapt automatically]
  • default python stack (numpy, pandas, etc.)

Performance

One of the performance bottlenecks appears to be the numpy pad functions. However they are currently rewritten (see here) and might improve performance in future versions of numpy.

Known Issues

  • Augmentation only works with absolute coordinates on x-y ordering! (otherwise might produce wrong results, use test_input to verify!)

License

Published under MIT License.

Project details


Release history Release notifications

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for bp-storage, version 1.0.0
Filename, size File type Python version Upload date Hashes
Filename, size bp_storage-1.0.0.tar.gz (15.0 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page