Skip to main content

Bayesian models for football leagues

Project description

bpl

Build Status codecov

bpl is a python 3 library for fitting Bayesian versions of the Dixon & Coles (1997) model to data. It uses the stan library to fit models to data.

Installation

You will need a working C++ compiler. If you are using anaconda, you can install gcc with

conda install gcc

You can then install with pip:

pip install https://github.com/anguswilliams91/bpl/archive/master.zip

Usage

bpl provides a class BPLModel that can be used to forecast the outcome of football matches. Data should be provided to the model as a pandas dataframe, with columns home_team, away_team, home_goals and away_goals. You can also optionally provide a set of numerical covariates for each team (e.g. their ratings on FIFA) and these will be used in the fit. Example usage:

import bpl
import pandas as pd

df_train = pd.read_csv("<path-to-training-data>")
df_X = pd.read_csv("<path-to-team-level-covariates>")
forecaster = bpl.BPLModel(data=df_train, X=df_X)
forecaster.fit(seed=42)

# calculate the probability that team 1 beats team 2 3-0 at home:
forecaster.score_probability("Team 1", "Team 2", 3, 0)

# calculate the probabilities of a home win, an away win and a draw:
forecaster.overall_probabilities("Team 1", "Team 2")

# compute home win, away win and draw probabilities for a collection of matches:
df_test = pd.read_csv("<path-to-test-data>") # must have columns "home_team" and "away_team"
forecaster.predict_future_matches(df_test)

# add a new, previously unseen team to the model by sampling from the prior
X_3 = np.array([0.1, -0.5, 3.0]) # the covariates for the new team
forecaster.add_new_team("Team 3", X=X_3, seed=43)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bpl-0.0.3.tar.gz (27.8 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page