Skip to main content

Define your BigQuery tables as dataclasses.

Project description

bq-schema

Python package PyPI version Codecov Code style: black Imports: isort

Motivation

At limehome we are heavy users of python and bigquery. This library was created to mainly solve the following issues:

  • Define table schemas in code and have a migration script to apply changes.
  • On deploy make sure that all schemas were applied, otherwise abort.
  • Guarantee that when we try to write data to a table, the data matches the schema of the table (required / optional, datatypes)
  • Version our tables and enable migrations to a new schema

Additionally this library aims to help the users through the usage of python typing.

  • Specify your schema as a python dataclass
  • Our migration script converts the data class into a bigquery schema definition
  • Deserialize rows into a dataclass instance, while reading from a table
  • Serialize a dataclass instance into a dictionary and write it to the table.

The main benefit of combining all these features is, that we can guarantee that our code will run, before we deploy to production.

Quickstart

Since this library makes use of newer features of python, you need at least python3.7.

  1. Install the package
pip install bq_schema
  1. Create a schema and a table definition in my_table.py
@dataclass
class Schema:
    string_field: str = field(metadata={"description": "This is a STRING field."})
    int_field: Optional[int]
    some_floats: List[float]
    bool_field: bool

class MyTable(BigqueryTable):
    name = "my_table_name"
    schema = Schema

If you have already tables created in your account, you can use the convert-table script to create a schema.

  1. Create your table

Hint: Make sure to have you credentials set:

export GOOGLE_APPLICATION_CREDENTIALS=your_auth.json

Alternativly you can set the service_file as a environment variable:

export GOOGLE_SERVICE_FILE={"type": "service_account", ...}

Now create your table

migrate-tables --project my_project --dataset my_dataset --module-path my_table --apply
  1. Write a row
from google.cloud import bigquery
row = Schema(string_field="foo", int_field=1, some_floats=[1.0, 2.0], bool_field=True)
row_transformer = RowTransformer[Schema](Schema)
serialized_row = RowTransformer.dataclass_instance_to_bq_row(row)

bigquery_client = bigquery.Client()
table = bigquery_client.get_table("project.dataset.my_table_name")
bigquery_client.insert_rows(table, [serialized_row])
  1. Validate you code with a type checker like mypy
mypy my_table.py
  1. Read a row
query = "SELECT * FROM project.dataset.my_table_name"
for row in bigquery_client.query(query=query):
    deserialized_row = row_transformer.bq_row_to_dataclass_instance(row)
    assert isinstance(deserialized_row, Schema)

Documentation

Schema definitions

For a full list of supported types check the following schema:

from typing import Optional
from dataclasses import dataclass

@dataclass
class RequiredNestedField:
    int_field: int = field(metadata={"description": "This field is an INT field."})


@dataclass
class RequiredSchema:
    string_field: str = field(metadata={"description": "This field is a STRING field."})
    string_field_optional = Optional[str]
    bytes_field: bytes
    int_field: int
    float_field: float
    numeric_field: Decimal
    bool_field: bool
    timestamp_field: Timestamp
    date_field: date
    time_field: time
    datetime_field: datetime
    required_nested_field: RequiredNestedField = field(metadata={"description": "This field is a STRUCT field."})
    optional_nested_field: Optional[RequiredNestedField] 
    repeated_nested_field: List[RequiredNestedField]

Timestamps

Timestamps are deserialized into datetime objects, due to the nature of the underlying bq library. To distinguish between datetime and timestamp use bq_schema.types.type_mapping. Usage:

from bq_schema.types.type_mapping import Timestamp
from datetime import datetime

the_timestamp = Timestamp(datetime.utcnow())

Table definitions

The bigquery class is used for:

  • Recursive table discovery by our migrate-tables script
  • Define table properties like name and schema

Required properties

  • name: The name of the table
  • schema: table schema either as dataclass or a list of schema fields

Optional properties

  • project: name of the project, can be overwritten by the migrate-tables script
  • dataset: name of the dataset, can be overwritten by the migrate-tables script

Versioning tables

Since bigquery does not allow backwards incompatible schema changes, you might want to version your schemas.project

class MyTable(BigqueryTable):
    name = "my_table_name"
    schema = Schema
    version = "1"

By default the version will be appended to the table name, like so: my_table_name_v1. If you want to overwrite this behaviour, you can implement the full_table_name method.

Time partitioning

Define time partitioning for your table:

from bq_schema.types.type_mapping import Timestamp
from google.cloud.bigquery import TimePartitioning, TimePartitioningType

class MyTable:
    time_partitioning = TimePartitioning(
        type_=TimePartitioningType.DAY, field="some_column"
    )

Scripts

migrate-tables

This script has two uses:

  • Check if locally defined schemas are in sync with the schemas in bigquery
  • If a difference is detected, we try to apply the changes

The script will find all defined tables recursivly for a given python module.

Note: If you have not defined your project and / or dataset in code, you will have to pass it as a parameter to the script. Show the help:

migrate-tables --help

Check if tables are in sync. List all changes.

migrate-tables --module-path module/

If you want the script to fail on a change, add the validate flag. Useful for running inside your CI:

migrate-tables --module-path module/ --validate

Apply changes

migrate-tables --module-path src/jobs/ --apply

convert-table

If you already have tables created in bigquery, this script print the corresponding dataclass for you.

Show the help:

convert-table --help

Print a table:

convert-table --project project --dataset scraper --table-name table_name >> schema.py

Development

Setting up your dev environment

  1. Clone the project.

  2. Navigate into the cloned project.

  3. Create a virtual environment with python version >=3.7

    pipenv --python PYTHON_VERSION

    $ pipenv --python 3.7
    

    or

    virtualenv -p /PATH_TO_PYTHON/ /DESIRED_PATH/VENV_NAME

    $ virtualenv -p /usr/bin/python3.7 placeholder
    
  4. Install flit via pip

    $ pip install flit
    
  5. Install packages

    $ flit install --symlink
    

Code quality

Run all code quality checks:

inv check-all
Test
inv test
Lint
inv lint
Types
inv type-check
Code format
inv format-code

Validate code is correctly formatted:

inv check-code-format

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bq-schema-0.4.tar.gz (19.7 kB view details)

Uploaded Source

Built Distribution

bq_schema-0.4-py3-none-any.whl (14.0 kB view details)

Uploaded Python 3

File details

Details for the file bq-schema-0.4.tar.gz.

File metadata

  • Download URL: bq-schema-0.4.tar.gz
  • Upload date:
  • Size: 19.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.25.0

File hashes

Hashes for bq-schema-0.4.tar.gz
Algorithm Hash digest
SHA256 8bcf963b90cfa48c766c0363e8620bbc256f399f63948ba21f8b270bae1a8a90
MD5 359b723cf398aace496bf022d3445e28
BLAKE2b-256 60c278702152aeb76ae770b0156a41c8aa74c65763e87c56ec8de250c14e5ae0

See more details on using hashes here.

File details

Details for the file bq_schema-0.4-py3-none-any.whl.

File metadata

  • Download URL: bq_schema-0.4-py3-none-any.whl
  • Upload date:
  • Size: 14.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.25.0

File hashes

Hashes for bq_schema-0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 c289ddd85a6a5dc3f823484e48e6bdd4ee33e7e7e7ff69e4e86df99bb5bc436f
MD5 239813913757c7e0d4c4edeb9813be76
BLAKE2b-256 d11a5bcc6e78f47f4f0ad2d641d9a2c31224e14e8c81f3df6a4c985c5fb374ae

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page