A set of tools for navigating, viewing and manipulating hierarchical brain atlases
Project description
Brain Atlas Toolkit
This package is intended as a toolkit for manipulating hierarchical brain atlases. For example, the Allen Mouse Brain Atlas has a parent-child ontology of this structure:
{
"id": 997,
"acronym": "root",
"name": "root",
"graph_order": 0,
"parent_structure_id": null,
"children": [
{
"id": 8,
"acronym": "grey",
"name": "Basic cell groups and regions",
"graph_order": 1,
"parent_structure_id": 997,
"children": [
{
"id": 567,
"acronym": "CH",
"name": "Cerebrum",
"graph_order": 2,
"parent_structure_id": 8,
"children": [
...
Requirements
- python>=3.7
- A system-wide installation of graphviz: https://www.graphviz.org/ if you are going to use any of the visualization tools in this package.
Examples
Load a custom brain atlas from JSON file
from brain_atlas_toolkit import graph_tools
import json
json_file = "allen_ontology.json"
with open(json_file,'r') as infile:
ontology_dict = json.load(infile)
Note that this JSON file must have the structure of the example ontology shown above. The minimal set of keys in each element are:
- id
- name
- parent_structure_id
Initialize ontology graph
ontology_graph = graph_tools.Graph(ontology_dict)
Get all progeny (a.k.a. descendents or subregions) of a region of interest returned in a flattened list
ontology_graph.get_progeny('Somatomotor areas')
which returns:
['Somatomotor areas, Layer 1', 'Somatomotor areas, Layer 2/3', 'Somatomotor areas, Layer 5', 'Somatomotor areas, Layer 6a', 'Somatomotor areas, Layer 6b', 'Primary motor area', 'Primary motor area, Layer 1', 'Primary motor area, Layer 2/3', 'Primary motor area, Layer 5', 'Primary motor area, Layer 6a', 'Primary motor area, Layer 6b', 'Secondary motor area', 'Secondary motor area, layer 1', 'Secondary motor area, layer 2/3', 'Secondary motor area, layer 5', 'Secondary motor area, layer 6a', 'Secondary motor area, layer 6b']
Get the parent name of a region of interest
ontology_graph.get_parent('Somatomotor areas')
which returns:
Isocortex
Get the integer id of a region of interest
ontology_graph.get_id('Somatomotor areas')
which returns:
500
Get the acronym name of a region of interest
ontology_graph.get_parent('Somatomotor areas')
which returns:
MO
Print a branch of the ontology
ontology_graph.print_branch('Somatomotor areas')
which returns
0 Somatomotor areas
1 Somatomotor areas, Layer 1
1 Somatomotor areas, Layer 2/3
1 Somatomotor areas, Layer 5
1 Somatomotor areas, Layer 6a
1 Somatomotor areas, Layer 6b
1 Primary motor area
2 Primary motor area, Layer 1
2 Primary motor area, Layer 2/3
2 Primary motor area, Layer 5
2 Primary motor area, Layer 6a
2 Primary motor area, Layer 6b
1 Secondary motor area
2 Secondary motor area, layer 1
2 Secondary motor area, layer 2/3
2 Secondary motor area, layer 5
2 Secondary motor area, layer 6a
2 Secondary motor area, layer 6b
Print a branch of the ontology and control the depth of the tree
ontology_graph.print_branch('Somatomotor areas',stoplevel=1)
which returns
0 Somatomotor areas
1 Somatomotor areas, Layer 1
1 Somatomotor areas, Layer 2/3
1 Somatomotor areas, Layer 5
1 Somatomotor areas, Layer 6a
1 Somatomotor areas, Layer 6b
1 Primary motor area
1 Secondary motor area
The default stoplevel value is -1, which means print the entire tree to max depth.
Visualize a branch of the ontology
digraph = ontology_graph.visualize_graph('Somatomotor areas',level=2)
digraph.format='png' # control the image type; supports png, pdf and other formats
digraph.view()
The last line will save and then open up an image in your default image viewer application. The image should look like this (click image to view zoomed in version):
For full documentation of the digraph
object, see the graphviz Python API documentation: https://graphviz.readthedocs.io/en/stable/
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file brain_atlas_toolkit-0.4.3.tar.gz
.
File metadata
- Download URL: brain_atlas_toolkit-0.4.3.tar.gz
- Upload date:
- Size: 114.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 34ce38e1e94986752210cf8a757eeb97186b72c140ae285fa21ee685716db7d4 |
|
MD5 | c917172b39851b57a90d2b762615c725 |
|
BLAKE2b-256 | a4aec934d795dca12df41de814e5b10589c5e5b2a2d56ebddd45eed579dca5a0 |
File details
Details for the file brain_atlas_toolkit-0.4.3-py3-none-any.whl
.
File metadata
- Download URL: brain_atlas_toolkit-0.4.3-py3-none-any.whl
- Upload date:
- Size: 17.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 112f958a98495e38c0a2e1a97076f5b4faabf58c081567ce9fec55bc03303e2d |
|
MD5 | 70a630d5df5bd3b2177e16fc9ca3970b |
|
BLAKE2b-256 | 2b0f10dc6befabcc3df9659c4cf734fed65e964fd75028b8593f449863496372 |