Skip to main content

A set of tools for navigating, viewing and manipulating hierarchical brain atlases

Project description

Brain Atlas Toolkit

This package is intended as a toolkit for manipulating hierarchical brain atlases. For example, the Allen Mouse Brain Atlas has a parent-child ontology of this structure:

{
 "id": 997,
 "acronym": "root",
 "name": "root",
 "graph_order": 0,
 "parent_structure_id": null,
 "children": [
  {
   "id": 8,
   "acronym": "grey",
   "name": "Basic cell groups and regions",
   "graph_order": 1,
   "parent_structure_id": 997,
   "children": [
    {
     "id": 567,
     "acronym": "CH",
     "name": "Cerebrum",
     "graph_order": 2,
     "parent_structure_id": 8,
     "children": [
     ...

Requirements

  • python>=3.7
  • A system-wide installation of graphviz: https://www.graphviz.org/ if you are going to use any of the visualization tools in this package.

Examples

Load a custom brain atlas from JSON file

from brain_atlas_toolkit import graph_tools
import json

json_file = "allen_ontology.json"
with open(json_file,'r') as infile:
	ontology_dict = json.load(infile)

Note that this JSON file must have the structure of the example ontology shown above. The minimal set of keys in each element are:

  • id
  • name
  • parent_structure_id

Initialize ontology graph

ontology_graph = graph_tools.Graph(ontology_dict)

Get all progeny (a.k.a. descendents or subregions) of a region of interest returned in a flattened list

ontology_graph.get_progeny('Somatomotor areas')

which returns:

['Somatomotor areas, Layer 1', 'Somatomotor areas, Layer 2/3', 'Somatomotor areas, Layer 5', 'Somatomotor areas, Layer 6a', 'Somatomotor areas, Layer 6b', 'Primary motor area', 'Primary motor area, Layer 1', 'Primary motor area, Layer 2/3', 'Primary motor area, Layer 5', 'Primary motor area, Layer 6a', 'Primary motor area, Layer 6b', 'Secondary motor area', 'Secondary motor area, layer 1', 'Secondary motor area, layer 2/3', 'Secondary motor area, layer 5', 'Secondary motor area, layer 6a', 'Secondary motor area, layer 6b']

Get the parent name of a region of interest

ontology_graph.get_parent('Somatomotor areas')

which returns:

Isocortex

Get the integer id of a region of interest

ontology_graph.get_id('Somatomotor areas')

which returns:

500

Get the acronym name of a region of interest

ontology_graph.get_parent('Somatomotor areas')

which returns:

MO

Print a branch of the ontology

ontology_graph.print_branch('Somatomotor areas')

which returns

 0 Somatomotor areas
	 1 Somatomotor areas, Layer 1
	 1 Somatomotor areas, Layer 2/3
	 1 Somatomotor areas, Layer 5
	 1 Somatomotor areas, Layer 6a
	 1 Somatomotor areas, Layer 6b
	 1 Primary motor area
		 2 Primary motor area, Layer 1
		 2 Primary motor area, Layer 2/3
		 2 Primary motor area, Layer 5
		 2 Primary motor area, Layer 6a
		 2 Primary motor area, Layer 6b
	 1 Secondary motor area
		 2 Secondary motor area, layer 1
		 2 Secondary motor area, layer 2/3
		 2 Secondary motor area, layer 5
		 2 Secondary motor area, layer 6a
		 2 Secondary motor area, layer 6b

Print a branch of the ontology and control the depth of the tree

ontology_graph.print_branch('Somatomotor areas',stoplevel=1)

which returns

 0 Somatomotor areas
	 1 Somatomotor areas, Layer 1
	 1 Somatomotor areas, Layer 2/3
	 1 Somatomotor areas, Layer 5
	 1 Somatomotor areas, Layer 6a
	 1 Somatomotor areas, Layer 6b
	 1 Primary motor area
	 1 Secondary motor area

The default stoplevel value is -1, which means print the entire tree to max depth.

Visualize a branch of the ontology

digraph = ontology_graph.visualize_graph('Somatomotor areas',level=2)
digraph.format='png' # control the image type; supports png, pdf and other formats
digraph.view()

The last line will save and then open up an image in your default image viewer application. The image should look like this (click image to view zoomed in version): https://github.com/BRAINCoGS/brain_atlas_toolkit/blob/master/src/static/Digraph.gv.png

For full documentation of the digraph object, see the graphviz Python API documentation: https://graphviz.readthedocs.io/en/stable/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

brain_atlas_toolkit-0.4.3.tar.gz (114.0 kB view details)

Uploaded Source

Built Distribution

brain_atlas_toolkit-0.4.3-py3-none-any.whl (17.3 kB view details)

Uploaded Python 3

File details

Details for the file brain_atlas_toolkit-0.4.3.tar.gz.

File metadata

  • Download URL: brain_atlas_toolkit-0.4.3.tar.gz
  • Upload date:
  • Size: 114.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for brain_atlas_toolkit-0.4.3.tar.gz
Algorithm Hash digest
SHA256 34ce38e1e94986752210cf8a757eeb97186b72c140ae285fa21ee685716db7d4
MD5 c917172b39851b57a90d2b762615c725
BLAKE2b-256 a4aec934d795dca12df41de814e5b10589c5e5b2a2d56ebddd45eed579dca5a0

See more details on using hashes here.

File details

Details for the file brain_atlas_toolkit-0.4.3-py3-none-any.whl.

File metadata

  • Download URL: brain_atlas_toolkit-0.4.3-py3-none-any.whl
  • Upload date:
  • Size: 17.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for brain_atlas_toolkit-0.4.3-py3-none-any.whl
Algorithm Hash digest
SHA256 112f958a98495e38c0a2e1a97076f5b4faabf58c081567ce9fec55bc03303e2d
MD5 70a630d5df5bd3b2177e16fc9ca3970b
BLAKE2b-256 2b0f10dc6befabcc3df9659c4cf734fed65e964fd75028b8593f449863496372

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page