Skip to main content

Screen loops among brain structures(or any entities comprising a graph).

Project description

Loop Search

Tools for screening significant loop structures in a graph, typically a brain structure graph with physiological or anatomical edge data.

Installation

$ pip install brain-loop-screen

Usage

Packing a bigger graph for regions of interest

Packing vertices:

import brain_loop_search as bls

vertices = [322, 329, 981, 337, 453, 8, 1070] # ccf brain id

# ccf ontology
ontology = bls.brain_utils.CCFv3Ontology()

vp = bls.packing.VertexPacker(vertices, ontology)
# filtering by level
vp.filter_by_level(fro=1, to=2)

Packing a graph:

import brain_loop_search as bls
import pandas as pd
import numpy as np

vertices = [322, 329, 981, 337, 453, 1070, 345, 353, 361] # ccf brain id

# adjacent matrix
adj_mat = pd.DataFrame(np.array([
            [0, 1, 1, 0, 0, 0, 1, 1, 0],
            [0, 0, 1, 1, 1, 1, 0, 1, 0],
            [0, 0, 0, 0, 1, 1, 1, 1, 1],
            [0, 0, 1, 0, 0, 1, 0, 1, 0],
            [1, 0, 1, 0, 0, 1, 0, 1, 0],
            [0, 1, 1, 1, 1, 1, 0, 1, 0],
            [0, 0, 0, 0, 0, 1, 0, 0, 1],
            [1, 0, 0, 0, 0, 1, 1, 1, 0],
            [1, 1, 1, 0, 0, 1, 0, 1, 1]
        ]), index=vertices, columns=vertices)

# ccf ontology
ontology = bls.brain_utils.CCFv3Ontology()

# packing
new_rows = [322]
new_cols = [337, 329, 353]
graph_packer = bls.packing.GraphPacker(adj_mat, ontology)
new_mat = graph_packer.pack(new_rows, new_cols, def_val=0, superior_as_complement=True, aggr_func=np.sum)

Shortest Path Loop Search

Screen simple loops from the graph.

import brain_loop_search as bls
import pandas as pd

edges = pd.DataFrame({
            "a": [1, 2, 3, 4, 5],
            "b": [4, -1, -1, 1, -1],
            "c": [5, 6, 7, 8, 9],
            "d": [-1, 2, 3, 1, 2],
            "e": [-1, -1, -1, -1, -1]
        }, index=["a", "b", "c", "d", "e"])

g = bls.search.ShortestPathLoopSearch()
g.add_subgraph(edges)

# search by single shortest path with a reverse edge
loops = g.pair_complement(axis_pool=['a', 'b', 'c'])
# search by chaining 3 of the shortest paths found
loops, sssp = g.chain_screen(n_axis=3)

Max Flow Loop Search

Generate a new graph of potentially integrated loops.

import brain_loop_search as bls
import pandas as pd

edges = pd.DataFrame({
            "a": [1, 2, 3, 4, 5],
            "b": [4, -1, -1, 1, -1],
            "c": [5, 6, 7, 8, 9],
            "d": [-1, 2, 3, 1, 2],
            "e": [-1, -1, -1, -1, -1]
        }, index=["a", "b", "c", "d", "e"])

g = bls.search.ShortestPathLoopSearch()
g.add_subgraph(edges)

# find a single max flow with a reverse edge (like a magnet field)
new_g = g.magnet_flow(s='b', t='a')
# find cycled max flows and merge them into a new graph
new_g = g.merged_cycle_flow(axes=['b', 'c', 'a'])

Visualization

Visualize a single loop

import brain_loop_search as bls

# a loop is a list of list, with the head and tail of the sublist as axes
# here are some random picked brain regions
loop = [[950, 974, 417], [417, 993], [993, 234, 289, 950]]
bls.brain_utils.draw_single_loop(loop, 'test.png')

Figure:

Visualize a graph

import numpy as np
import pandas as pd
import brain_loop_search as bls
vertices = [322, 329, 981, 337, 453, 1070, 345, 353, 361]
adj_mat = pd.DataFrame(np.array([
    [0, 2, 1, 0, 0, 0, 1, 8, 0],
    [0, 0, 3, 1, 5, 1, 0, 5, 0],
    [0, 0, 0, 0, 1, 3, 2, 1, 2],
    [0, 0, 6, 0, 0, 1, 0, 4, 0],
    [1, 0, 1, 0, 0, 1, 0, 4, 0],
    [0, 1, 7, 1, 4, 1, 0, 1, 0],
    [0, 0, 0, 0, 0, 1, 0, 0, 1],
    [1, 0, 0, 0, 0, 2, 2, 1, 0],
    [1, 2, 2, 0, 0, 1, 0, 1, 1]
]), index=vertices, columns=vertices)
g = bls.search.GraphMaintainer()
g.add_subgraph(adj_mat)
bls.brain_utils.draw_brain_graph(g.graph, 'test2.png', thr=3)

Figure:

Useful Links

Github project: https://github.com/SEU-ALLEN-codebase/brain-loop-search

Documentation: https://SEU-ALLEN-codebase.github.io/brain-loop-search

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

brain-loop-search-0.1.1.tar.gz (316.7 kB view details)

Uploaded Source

Built Distribution

brain_loop_search-0.1.1-py3-none-any.whl (33.0 kB view details)

Uploaded Python 3

File details

Details for the file brain-loop-search-0.1.1.tar.gz.

File metadata

  • Download URL: brain-loop-search-0.1.1.tar.gz
  • Upload date:
  • Size: 316.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.4

File hashes

Hashes for brain-loop-search-0.1.1.tar.gz
Algorithm Hash digest
SHA256 ccf1c874515589d0eeb8ebac322a646ebce355b7bfdb788c83a53c46e39109ea
MD5 e81414341645c37688f57b6390325c55
BLAKE2b-256 81c5b2ae8ad073c87945a4ead765b3546a10951fa9f9fbda7f106a58d1ae01ae

See more details on using hashes here.

File details

Details for the file brain_loop_search-0.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for brain_loop_search-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 ef0246184dc8bfdfdd24f710b5dec59ea04d53fb436f4ce10a26a7ffebb1a42a
MD5 aba03201184a06e4446ae597880e76e1
BLAKE2b-256 f19b549e2a842540b2c7d7f3cff2a91d9725942822ba0b71f6ddc2adff0347ec

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page