Skip to main content

Screen loops among brain structures(or any entities comprising a graph).

Project description

Brain Loop Search

Tools for screening significant loop structures in a graph, typically a brain structure graph with physiological or anatomical edge data.

Installation

$ pip install brain-loop-search

Usage

Packing a bigger graph for regions of interest

Packing vertices:

import brain_loop_search as bls

vertices = [322, 329, 981, 337, 453, 8, 1070] # ccf brain id

# ccf ontology
ontology = bls.brain_utils.CCFv3Ontology()

vp = bls.packing.VertexPacker(vertices, ontology)
# filtering by level
vp.filter_by_level(fro=1, to=2)

Packing a graph:

import brain_loop_search as bls
import pandas as pd
import numpy as np

vertices = [322, 329, 981, 337, 453, 1070, 345, 353, 361] # ccf brain id

# adjacent matrix
adj_mat = pd.DataFrame(np.array([
            [0, 1, 1, 0, 0, 0, 1, 1, 0],
            [0, 0, 1, 1, 1, 1, 0, 1, 0],
            [0, 0, 0, 0, 1, 1, 1, 1, 1],
            [0, 0, 1, 0, 0, 1, 0, 1, 0],
            [1, 0, 1, 0, 0, 1, 0, 1, 0],
            [0, 1, 1, 1, 1, 1, 0, 1, 0],
            [0, 0, 0, 0, 0, 1, 0, 0, 1],
            [1, 0, 0, 0, 0, 1, 1, 1, 0],
            [1, 1, 1, 0, 0, 1, 0, 1, 1]
        ]), index=vertices, columns=vertices)

# ccf ontology
ontology = bls.brain_utils.CCFv3Ontology()

# packing
new_rows = [322]
new_cols = [337, 329, 353]
graph_packer = bls.packing.GraphPacker(adj_mat, ontology)
new_mat = graph_packer.pack(new_rows, new_cols, def_val=0, superior_as_complement=True, aggr_func=np.sum)

Shortest Path Loop Search

Screen simple loops from the graph.

import brain_loop_search as bls
import pandas as pd

edges = pd.DataFrame({
            "a": [1, 2, 3, 4, 5],
            "b": [4, -1, -1, 1, -1],
            "c": [5, 6, 7, 8, 9],
            "d": [-1, 2, 3, 1, 2],
            "e": [-1, -1, -1, -1, -1]
        }, index=["a", "b", "c", "d", "e"])

g = bls.search.ShortestPathLoopSearch()
g.add_subgraph(edges)

# search by single shortest path with a reverse edge
loops = g.pair_complement(axis_pool=['a', 'b', 'c'])
# search by chaining 3 of the shortest paths found
loops, sssp = g.chain_screen(n_axis=3)

Max Flow Loop Search

Generate a new graph of potentially integrated loops.

import brain_loop_search as bls
import pandas as pd

edges = pd.DataFrame({
            "a": [1, 2, 3, 4, 5],
            "b": [4, -1, -1, 1, -1],
            "c": [5, 6, 7, 8, 9],
            "d": [-1, 2, 3, 1, 2],
            "e": [-1, -1, -1, -1, -1]
        }, index=["a", "b", "c", "d", "e"])

g = bls.search.ShortestPathLoopSearch()
g.add_subgraph(edges)

# find a single max flow with a reverse edge (like a magnet field)
new_g = g.magnet_flow(s='b', t='a')
# find cycled max flows and merge them into a new graph
new_g = g.merged_cycle_flow(axes=['b', 'c', 'a'])

Visualization

Visualize a single loop

import brain_loop_search as bls

# a loop is a list of list, with the head and tail of the sublist as axes
# here are some random picked brain regions
loop = [[950, 974, 417], [417, 993], [993, 234, 289, 950]]
bls.brain_utils.draw_single_loop(loop, 'test.png')

Figure:

Visualize a graph

import numpy as np
import pandas as pd
import brain_loop_search as bls
vertices = [322, 329, 981, 337, 453, 1070, 345, 353, 361]
adj_mat = pd.DataFrame(np.array([
    [0, 2, 1, 0, 0, 0, 1, 8, 0],
    [0, 0, 3, 1, 5, 1, 0, 5, 0],
    [0, 0, 0, 0, 1, 3, 2, 1, 2],
    [0, 0, 6, 0, 0, 1, 0, 4, 0],
    [1, 0, 1, 0, 0, 1, 0, 4, 0],
    [0, 1, 7, 1, 4, 1, 0, 1, 0],
    [0, 0, 0, 0, 0, 1, 0, 0, 1],
    [1, 0, 0, 0, 0, 2, 2, 1, 0],
    [1, 2, 2, 0, 0, 1, 0, 1, 1]
]), index=vertices, columns=vertices)
g = bls.search.GraphMaintainer()
g.add_subgraph(adj_mat)
bls.brain_utils.draw_brain_graph(g.graph, 'test2.png', thr=3)

Figure:

Useful Links

Github project: https://github.com/SEU-ALLEN-codebase/brain-loop-search

Documentation: https://SEU-ALLEN-codebase.github.io/brain-loop-search

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

brain-loop-search-0.1.6.tar.gz (321.8 kB view details)

Uploaded Source

Built Distribution

brain_loop_search-0.1.6-py3-none-any.whl (33.3 kB view details)

Uploaded Python 3

File details

Details for the file brain-loop-search-0.1.6.tar.gz.

File metadata

  • Download URL: brain-loop-search-0.1.6.tar.gz
  • Upload date:
  • Size: 321.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.4

File hashes

Hashes for brain-loop-search-0.1.6.tar.gz
Algorithm Hash digest
SHA256 dee8562019ec375a10db78511c63841fb8293a13ee1c9382986226f938fc8a87
MD5 a09252a70908e8740adf725565c81b0e
BLAKE2b-256 fde0b6b46083d5b586ebcf1547b8c9858341b90f958abfce72652919b2cdd19a

See more details on using hashes here.

File details

Details for the file brain_loop_search-0.1.6-py3-none-any.whl.

File metadata

File hashes

Hashes for brain_loop_search-0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 537decf39911b83ddac0db912cb378f8f44c1792094937a28b1024a98e47e9bd
MD5 7e8c33cf441b76916b48069a8611129d
BLAKE2b-256 6bc94cd95f9c1728fc59ac5413b8d9b85c247d111e9ae2d74f9de5feae4ceaa5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page