Portable and lightweight brain segmentation using tinygrad
Project description
BrainChop
BrainChop is a lightweight tool for brain segmentation that runs on pretty much everything.
Installation
pip install brainchop
For development (includes docs, testing):
pip install -e ".[all]"
CLI Usage
# Segment a brain MRI
brainchop input.nii.gz -o output.nii.gz
# List available models
brainchop --list
# Use a specific model
brainchop input.nii.gz -m subcortical -o output.nii.gz
# Skull stripping
brainchop input.nii.gz --skull-strip -o brain.nii.gz
# With BEAM optimization
brainchop input.nii.gz -m tissue_fast --beam 2 -o output.nii.gz
Python API
import brainchop as bc
# List available models
print(bc.list_models())
# Load, segment, save
vol = bc.load("input.nii.gz")
result = bc.segment(vol, "subcortical")
bc.save(result, "output.nii.gz")
# With BEAM optimization
bc.optimize("tissue_fast", beam=2)
result = bc.segment(vol, "tissue_fast")
# Export to WebGPU
bc.export("tissue_fast", "/tmp/export")
Documentation
Serve docs locally:
mkdocs serve -w brainchop/
Docker
git clone git@github.com:neuroneural/brainchop-cli.git
cd brainchop-cli
docker build -t brainchop .
Then to run:
docker run --rm -it --device=nvidia.com/gpu=all -v [[output directory]]:/app brainchop [[input nifti file]] -o [[output nifti file]]
Requirements
- Python 3.10+
- tinygrad
- numpy
- requests
License
MIT License
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
brainchop-0.2.1.tar.gz
(35.6 kB
view details)
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
brainchop-0.2.1-py3-none-any.whl
(32.7 kB
view details)
File details
Details for the file brainchop-0.2.1.tar.gz.
File metadata
- Download URL: brainchop-0.2.1.tar.gz
- Upload date:
- Size: 35.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.2.0 CPython/3.13.3
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
a01c548128496be95ad025559fedf23a89a60ed96862f984af6e2699a48ca900
|
|
| MD5 |
11e7d999e5a79e3dca3ee0a55b85d5d4
|
|
| BLAKE2b-256 |
bb9ecb6a0f8c77460abe8bfdeb7604f7663b4c978e75f463f0989e98ecfa8e0e
|
File details
Details for the file brainchop-0.2.1-py3-none-any.whl.
File metadata
- Download URL: brainchop-0.2.1-py3-none-any.whl
- Upload date:
- Size: 32.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.2.0 CPython/3.13.3
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
5da0c1986edead7c7a07c383e941cccdc3aa9cf22665ddf274dfcd855b77a4ea
|
|
| MD5 |
e751fb790c89625be3aacc3e1e459490
|
|
| BLAKE2b-256 |
38017bfb285040ce6c58b198aefdb2e7ac84be544aa0ab21b6596085272fef3e
|