Microframework for python aws lambdas
Project description
braincube-aws-core
Microframework for Python AWS lambdas.
Installation
pip install braincube-aws-core-alpha
Built With
- asyncpg - A fast PostgreSQL Database Client Library for Python/asyncio.
- pydantic - Data validation using Python type hints.
- pypika - Python Query Builder.
Application Controllers Example
import asyncio
from uuid import uuid4
from http import HTTPStatus
from core.rest.data import HTTPRequest, HTTPResponse
from core.rest.app_module import AppModule
from core.rest.app_controller import AppController
from pydantic import BaseModel
class AccountDto(BaseModel):
iban: str
bban: str
data = {
"a0a412d9-87ef-474b-9ac8-b682ec5e0fb3": AccountDto(iban="EUR27100777770209299700", bban="EURC12345612345678"),
"5ebc25bd-e152-4a70-b251-d68e43be581e": AccountDto(iban="GR27100777770209299700", bban="GRC12345612345678"),
}
app = AppController("/accounts")
@app.get("/{id}")
async def get_account(request: HTTPRequest) -> HTTPResponse:
account = data.get(request.path_parameters["id"])
return HTTPResponse(HTTPStatus.OK if account else HTTPStatus.NO_CONTENT, account)
@app.post()
async def create_account(request: HTTPRequest[AccountDto]) -> HTTPResponse:
data[uuid4()] = request.body
return HTTPResponse(HTTPStatus.CREATED)
loop = asyncio.get_event_loop()
module = AppModule([app])
def main(event, context):
return loop.run_until_complete(module.serve(event, context))
Dependency Injection Example
from core.di.injector import inject
from core.dal.postgres_connection import get_pool, Pool
@inject("data_warehouse_pool")
async def provide_warehouse_pool() -> Pool:
return await get_pool()
@inject(qualifier="pool:data_warehouse_pool")
class BankService:
def __init__(self, pool: Pool):
self._pool = pool
Postgres Repository Example
from core.rest.data import HTTPRequest
from core.utils.data import Order, OrderType
from core.dal.data import Key, Schema, Column, Relation, SimpleColumn, JoinType, JoinThrough, StatementField
from core.dal.postgres_connection import get_pool, Pool
from core.dal.postgres_repository import PostgresRepository
# schema definition
equities = Schema(
table="equities",
alias="e",
primary_key=["id"],
columns=[
Column("id", updatable=False, insertable=False),
Column("name"),
Column("type"),
Column("issuer_id", alias="issuerId"),
Column("industry_sector", alias="industrySector"),
Column("isin"),
Column("reference"),
Column("bloomberg_code", alias="bloombergCode"),
Column("market_symbol", alias="marketSymbol"),
Column("currency"),
Column("country", ),
Column("min_amount", alias="minAmount"),
],
statement_fields=[
StatementField("isTypeOne", statement="CASE WHEN e.type = 1 then True else False END")
],
order=[
Order(type=OrderType.asc, alias="name")
],
relations=[
Relation(
table="parties",
alias="p",
columns=[
SimpleColumn("name"),
SimpleColumn("short_name", alias="shortName"),
],
join_forced=False,
join_type=JoinType.left,
join_through=JoinThrough(from_column_name="issuer_id", to_column_name="id")
)
]
)
# repository definition
class EquitiesRepo(PostgresRepository):
def __init__(self, pool: Pool):
super().__init__(pool, equities)
# repository usage
request = HTTPRequest()
repo = EquitiesRepo(await get_pool())
await repo.find_by_pk(Key(request.path_parameters["id"]), request.query_parameters.fields)
await repo.exists_by_pk(Key("9448a57b-f686-4935-b152-566baab712db"))
await repo.find_one(
request.query_parameters.fields,
conditions=request.query_parameters.conditions,
order=request.query_parameters.order)
await repo.find_all(
request.query_parameters.fields,
conditions=request.query_parameters.conditions,
order=request.query_parameters.order)
await repo.find_all_by_pk(
[
Key("9448a57b-f686-4935-b152-566baab712db"),
Key("43c8ec37-9a59-44eb-be90-def391ba2f02")
],
aliases=request.query_parameters.fields,
order=request.query_parameters.order)
await repo.find_many(
request.query_parameters.fields,
conditions=request.query_parameters.conditions,
page=request.query_parameters.page,
order=request.query_parameters.order)
await repo.insert({
"name": "Bursa de Valori Bucuresti SA",
"type": 1,
"industrySector": 40,
"isin": "ROBVBAACNOR0",
"bloombergCode": "BBG000BBWMC5",
"marketSymbol": "BVB RO Equity",
"currency": "RON",
"country": "RO",
})
await repo.insert_bulk(
aliases=["name", "type", "industrySector", "isin", "bloombergCode", "marketSymbol", "currency", "country"],
data=[
["Bursa de Valori Bucuresti SA", 1, 40, "ROBVBAACNOR0", "BBG000BBWMC5", "BVB RO Equity", "RON", "RO"],
["Citigroup Inc", 1, 40, "US1729674242", "BBG000FY4S11", "C US Equity", "USD", "US"],
["Coca-Cola HBC AG", 1, 49, "CH0198251305", "BBG004HJV2T1", "EEE GA Equity", "EUR", "GR"],
]
)
await repo.update({
"type": 1,
"isin": 40,
}, request.query_parameters.conditions, request.query_parameters.fields)
await repo.update_by_pk(Key("9448a57b-f686-4935-b152-566baab712db"), {
"type": 1,
"isin": 40
})
await repo.delete(request.query_parameters.conditions, ["id", "name", "type"])
await repo.delete_by_pk(Key("9448a57b-f686-4935-b152-566baab712db"), ["id", "name", "type"])
await repo.fetch("SELECT * FROM equities WHERE type = $1 and isin = $2", [1, "TREEGYO00017"])
await repo.fetch_one("SELECT * FROM equities WHERE id = $1", ["2b67122a-f47e-41b1-b7f7-53be5ca381a0"])
await repo.execute("DELETE FROM equities WHERE id = $1", ["2b67122a-f47e-41b1-b7f7-53be5ca381a0"])
Query params format
fields=name, type, industrySector, isin, bloombergCode, parties_name, parties_shortName
type=1
isin=range(40, 49)
id=any(9448a57b-f686-4935-b152-566baab712db, 43c8ec37-9a59-44eb-be90-def391ba2f02)
page_no=1
page_size=50
top_size=50
order=name, id DESC
Local Development Requirements
To use the SAM CLI, you need the following tools.
Run server locally
# open ssh tunel
sudo sh ssh_tunnel_Analog_JBox.sh
# apply code changes to docker image
sam-api$ sam build
# start server locally on http://127.0.0.1:3000
sam-api$ sam local start-api --warm-containers EAGER
# or run function locally using event.json as parameter
sam-api$ sam local invoke ApiFunction --event events/event.json
Deploy to AWS
sam build --use-container
sam deploy --capabilities CAPABILITY_NAMED_IAM --guided --profile analog_user --region eu-west-1
Build and deploy new package version using twine
python3 -m pip install --upgrade pip
python3 -m pip install --upgrade build
python3 -m pip install --upgrade twine
python3 -m build
twine upload --skip-existing dist/*
Resources
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file braincube-aws-core-alpha-0.0.31.tar.gz
.
File metadata
- Download URL: braincube-aws-core-alpha-0.0.31.tar.gz
- Upload date:
- Size: 18.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2c4a8efe8dad0a71d90f55cf0bdb636a5801f89318877243ea839b8919987fd2 |
|
MD5 | bb4c7f6847d356e20abee6b0d31adea0 |
|
BLAKE2b-256 | d0e0b71a74d720370dd9bc7ee9b96a3b97c9cc13c5ea2b618f05d98365d74d99 |
File details
Details for the file braincube_aws_core_alpha-0.0.31-py3-none-any.whl
.
File metadata
- Download URL: braincube_aws_core_alpha-0.0.31-py3-none-any.whl
- Upload date:
- Size: 22.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 14491fe227d4799dcdea920a8073bfeee13e00574e968296f67003f701d73df7 |
|
MD5 | f9539145f07da61cc932b54959224e2d |
|
BLAKE2b-256 | dbe1de38ccf7d7d834462c69eaa8e9f6fd5fa02332565b14c18f50f815074b01 |