Skip to main content

Automatically classify Brain MRI series by pulse sequence types: FLAIR, T1C, T2, ADC, DWI, TOF and OTHER

Project description

Brain MRI Pulse Sequences Classification

About Project

This is official code of our package brainmri_ps. We provide a machine learning based tool to automatically classify Brain MRI series into different pulse sequence types:

  • FLAIR
  • T1C
  • T2
  • ADC
  • DWI
  • TOF
  • OTHER

Installation

Install via pip:

pip install brainmri_ps

Usage

Load pretrained models:

from brainmri_ps import PulseSequenceClassifier
classifier = PulseSequenceClassifier("mobilenet_v2").from_pretrained()
Name Input Resolution #Params (M) MACs (G) Test Accuracy Pretrained
MobileNet V2 256 2.23 0.42 100.0

Example - predict from a study:

In  : classifier.predict_study("*/1.2.840.113619.6.388.6361536015762131135133837693432843617")
Out :
{
    "1.2.840.113619.2.5.1821162425615901145251590114525252000":   "ADC", 
    "1.2.840.113619.2.388.57473.14165493.12954.1590103413.819":    "T2", 
    "1.2.840.113619.2.388.57473.14165493.12954.1590103413.822":   "DWI", 
    "1.2.840.113619.2.388.57473.14165493.12954.1590103413.823":   "T1C", 
    "1.2.840.113619.2.388.57473.14165493.12954.1590103413.821": "FLAIR"
}

Function predict_study does the following steps:

  • Read all dicom files in a study folder and group them into series by SeriesInstanceUID field
  • Determine the orientation plane (axial, sagittal, coronal) of the series by using the ImageOrientationPatient field
  • Predict and return the pulse sequence types of axial series (ignore the non-axial ones)

Contact

Issues should be raised directly in the repository. For further support please email us at:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

brainmri_ps-1.1.1.tar.gz (5.9 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

brainmri_ps-1.1.1-py2.py3-none-any.whl (6.8 kB view details)

Uploaded Python 2Python 3

File details

Details for the file brainmri_ps-1.1.1.tar.gz.

File metadata

  • Download URL: brainmri_ps-1.1.1.tar.gz
  • Upload date:
  • Size: 5.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.28.1 CPython/3.7.10

File hashes

Hashes for brainmri_ps-1.1.1.tar.gz
Algorithm Hash digest
SHA256 3be590649feaff7680c46c6ede59f19ef767143afd57a6850a89337e3241e2a4
MD5 c9da089cec2923d6321f552568a227c2
BLAKE2b-256 81185b0f6c655f2f8edba374e84468222d66cd1be1e5e982e14ef80a203b298c

See more details on using hashes here.

File details

Details for the file brainmri_ps-1.1.1-py2.py3-none-any.whl.

File metadata

  • Download URL: brainmri_ps-1.1.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 6.8 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.28.1 CPython/3.7.10

File hashes

Hashes for brainmri_ps-1.1.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 eea8eac0b18f11579e9092d84d359f1d5d373b036e8d98c9b72fc514d552e33a
MD5 19ae4dd290914991106f14e9bd01013d
BLAKE2b-256 576b58a4dbfb82f8715228d860cb9517408314f73b15521addd41021d7e0797c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page