Automatically classify Brain MRI series by pulse sequence types: FLAIR, T1C, T2, ADC, DWI, TOF and OTHER
Project description
Brain MRI Pulse Sequences Classification
About Project
This is official code of our package brainmri_ps. We provide a machine learning based tool to automatically classify Brain MRI series into different pulse sequence types:
- FLAIR
- T1C
- T2
- ADC
- DWI
- TOF
- OTHER
Installation
Install via pip:
pip install brainmri_ps
Usage
Load pretrained models:
from brainmri_ps import PulseSequenceClassifier
classifier = PulseSequenceClassifier("mobilenet_v2").from_pretrained()
| Name | Input Resolution | #Params (M) | MACs (G) | Test Accuracy | Pretrained |
|---|---|---|---|---|---|
| MobileNet V2 | 256 | 2.23 | 0.42 | 100.0 | ✓ |
Example - predict from a study:
In : classifier.predict_study("*/1.2.840.113619.6.388.6361536015762131135133837693432843617")
Out :
{
"1.2.840.113619.2.5.1821162425615901145251590114525252000": "ADC",
"1.2.840.113619.2.388.57473.14165493.12954.1590103413.819": "T2",
"1.2.840.113619.2.388.57473.14165493.12954.1590103413.822": "DWI",
"1.2.840.113619.2.388.57473.14165493.12954.1590103413.823": "T1C",
"1.2.840.113619.2.388.57473.14165493.12954.1590103413.821": "FLAIR"
}
Function predict_study does the following steps:
- Read all dicom files in a study folder and group them into series by SeriesInstanceUID field
- Determine the orientation plane (axial, sagittal, coronal) of the series by using the ImageOrientationPatient field
- Predict and return the pulse sequence types of axial series (ignore the non-axial ones)
Contact
Issues should be raised directly in the repository. For further support please email us at:
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file brainmri_ps-1.1.1.tar.gz.
File metadata
- Download URL: brainmri_ps-1.1.1.tar.gz
- Upload date:
- Size: 5.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.28.1 CPython/3.7.10
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
3be590649feaff7680c46c6ede59f19ef767143afd57a6850a89337e3241e2a4
|
|
| MD5 |
c9da089cec2923d6321f552568a227c2
|
|
| BLAKE2b-256 |
81185b0f6c655f2f8edba374e84468222d66cd1be1e5e982e14ef80a203b298c
|
File details
Details for the file brainmri_ps-1.1.1-py2.py3-none-any.whl.
File metadata
- Download URL: brainmri_ps-1.1.1-py2.py3-none-any.whl
- Upload date:
- Size: 6.8 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.28.1 CPython/3.7.10
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
eea8eac0b18f11579e9092d84d359f1d5d373b036e8d98c9b72fc514d552e33a
|
|
| MD5 |
19ae4dd290914991106f14e9bd01013d
|
|
| BLAKE2b-256 |
576b58a4dbfb82f8715228d860cb9517408314f73b15521addd41021d7e0797c
|