Spatial graph embeddings for ObsidianMD
Project description
brainwalk
::: {.cell 0=‘h’ 1=‘i’ 2=‘d’ 3=‘e’}
import sys
sys.path.append("..")
from brainwalk.core import *
:::
Spatial graph embeddings for ObsidianMD
Install
pip install brainwalk
How to use
# Find the Obsidian Vault directory and assert that it exists
import os
from pathlib import Path
vault_dir = Path(os.getcwd()) / 'vault-stub'
assert vault_dir.exists()
# Retrieve a Gensim word2vec model of your Obsidian Graph
from brainwalk.core import brainwave, jaccard_coefficient
model = brainwave(vault_dir,jaccard_coefficient)
model.wv.key_to_index
{'Causam mihi': 0,
'Alimenta': 1,
'Brevissimus moenia': 2,
'Sussudio': 3,
'Ne fuit': 4,
'Vulnera ubera': 5,
'Bacchus': 6,
'Virtus': 7,
'Amor': 8,
'Tarpeia': 9,
'American Psycho (film)': 10,
'Tydides': 11,
'Manus': 12,
'Vita': 13,
'Aras Teucras': 14,
'Dives': 15,
'Aetna': 16,
'Isolated note': 17,
'lipsum/Isolated note': 18,
'Caelum': 19}
model.wv.most_similar("Vulnera ubera")
[('Sussudio', 0.9991790056228638),
('Aetna', 0.9991780519485474),
('Tydides', 0.9991397857666016),
('Bacchus', 0.9991208910942078),
('Virtus', 0.9990988373756409),
('Brevissimus moenia', 0.9990975260734558),
('Ne fuit', 0.9990928769111633),
('Dives', 0.9990816116333008),
('Alimenta', 0.9990617036819458),
('Amor', 0.9990396499633789)]
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
brainwalk-0.0.2.tar.gz
(9.8 kB
view details)
Built Distribution
File details
Details for the file brainwalk-0.0.2.tar.gz
.
File metadata
- Download URL: brainwalk-0.0.2.tar.gz
- Upload date:
- Size: 9.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fad8d3fd923060c9afa1a2cf77803ff6d7713aa0c6526b30e60108cfaae87193 |
|
MD5 | f5e5d48cc220aeb8b182142955ceecbd |
|
BLAKE2b-256 | 2108b5b4a640a5c6ad928d0a11393a08c025f87d9b917eb88ec6e73883f6b523 |
File details
Details for the file brainwalk-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: brainwalk-0.0.2-py3-none-any.whl
- Upload date:
- Size: 9.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8abaa1f4991058353236c2da65a5f6dcbabc9b91d5231df9bd00551f3264a1ce |
|
MD5 | 667c983b576a22b78f61415f5bc67d56 |
|
BLAKE2b-256 | 9e3e1c74ac8244a8fe1bd98137825813db12b0af9a9ad9f6e6f3970b1fc7e12d |