Skip to main content

Spatial graph embeddings for ObsidianMD

Project description

brainwalk

::: {.cell 0=‘h’ 1=‘i’ 2=‘d’ 3=‘e’}

import sys
sys.path.append("..")
from brainwalk.core import *

:::

Spatial graph embeddings for ObsidianMD

Install

pip install brainwalk

How to use

# Find the Obsidian Vault directory and assert that it exists
import os
from pathlib import Path
vault_dir = Path(os.getcwd()) / 'vault-stub'
assert vault_dir.exists()

# Retrieve a Gensim word2vec model of your Obsidian Graph
from brainwalk.core import brainwave
from wirewalk.core import jaccard_coefficient

model = brainwave(vault_dir,jaccard_coefficient)
model.wv.key_to_index
{'Vulnera ubera': 0,
 'Causam mihi': 1,
 'Sussudio': 2,
 'Ne fuit': 3,
 'Brevissimus moenia': 4,
 'Alimenta': 5,
 'American Psycho (film)': 6,
 'Aras Teucras': 7,
 'Tydides': 8,
 'Dives': 9,
 'Caelum': 10,
 'Vita': 11,
 'Isolated note': 12,
 'Tarpeia': 13,
 'Manus': 14,
 'Amor': 15,
 'lipsum/Isolated note': 16,
 'Bacchus': 17,
 'Virtus': 18,
 'Aetna': 19}
model.wv.most_similar("Vulnera ubera")
[('Ne fuit', 0.9992153644561768),
 ('Bacchus', 0.9991818070411682),
 ('Manus', 0.9991797804832458),
 ('Tydides', 0.9991616606712341),
 ('Sussudio', 0.9991515278816223),
 ('Vita', 0.9991357922554016),
 ('American Psycho (film)', 0.9991220831871033),
 ('lipsum/Isolated note', 0.9991198182106018),
 ('Virtus', 0.9991057515144348),
 ('Causam mihi', 0.999089777469635)]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

brainwalk-0.0.3.tar.gz (8.1 kB view details)

Uploaded Source

Built Distribution

brainwalk-0.0.3-py3-none-any.whl (7.5 kB view details)

Uploaded Python 3

File details

Details for the file brainwalk-0.0.3.tar.gz.

File metadata

  • Download URL: brainwalk-0.0.3.tar.gz
  • Upload date:
  • Size: 8.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for brainwalk-0.0.3.tar.gz
Algorithm Hash digest
SHA256 0733d43ad531f60bebfc9b8b864aaf7c745c4d57f3cdbaebb10aa43e06c191f2
MD5 0ea6777b45ae966324be163a98682ae5
BLAKE2b-256 07ac390c46758e51dec8f40639d7d2c89a630055e53cf56a9630dc27a67cb796

See more details on using hashes here.

File details

Details for the file brainwalk-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: brainwalk-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 7.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for brainwalk-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 b33ad8c750b64110acc455d8a70111eadc45844de8709d0dcea837d147de31ed
MD5 eded6c288aabc05a238cd7fa313cbf30
BLAKE2b-256 6a784284d3f3d582f6edbb6ceb680a4e9369458e2a5a5fffe372bf21082a5c84

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page