Skip to main content

BrainWeb-based multimodal models of 20 normal brains

Project description

The following example may be launched interactively via any of the following:

BrainWeb-based multimodal models of 20 normal brains


Download and Preprocessing for PET-MR Simulations

This notebook will not re-download/re-process files if they already exist.

  • Output data
    • ~/.brainweb/subject_*.npz: dtype(shape): float32(127, 344, 344)
  • Raw data source
    • ~/.brainweb/subject_*.bin.gz: dtype(shape): uint16(362, 434, 362)
  • Install
    • pip install brainweb

from __future__ import print_function, division
%matplotlib notebook
import brainweb
from brainweb import volshow
import numpy as np
from os import path
from import tqdm
import logging

Raw Data

# download
files = brainweb.get_files()

# read last file
data = brainweb.load_file(files[-1])

# show last subject
volshow(data, cmaps=['gist_ncar']);


Convert raw image data:

  • Siemens Biograph mMR resolution (~2mm) & dimensions (127, 344, 344)
  • PET/T1/T2/uMap intensities
  • randomised structure for PET/T1/T2
  • t (1 + g [2 G_sigma(r) - 1]), where
    • r = rand(127, 344, 344) in [0, 1),
    • Gaussian smoothing sigma = 1,
    • g = 1 for PET; 0.75 for MR, and
    • t = the PET or MR piecewise constant phantom

for f in tqdm(files, desc="mMR ground truths", unit="subject"):
    vol = brainweb.get_mmr_fromfile(
        petNoise=1, t1Noise=0.75, t2Noise=0.75,
        petSigma=1, t1Sigma=1, t2Sigma=1)
# show last subject
volshow([vol['PET' ][:, 100:-100, 100:-100],
         vol['uMap'][:, 100:-100, 100:-100],
         vol['T1'  ][:, 100:-100, 100:-100],
         vol['T2'  ][:, 100:-100, 100:-100]],
        cmaps=['hot', 'bone', 'Greys_r', 'Greys_r'],
        titles=["PET", "uMap", "T1", "T2"]);
# add some lesions
im3d = brainweb.add_lesions(vol['PET'])
volshow(im3d[:, 100:-100, 100:-100], cmaps=['hot']);

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for brainweb, version 1.3.0
Filename, size File type Python version Upload date Hashes
Filename, size brainweb-1.3.0-py2.py3-none-any.whl (8.9 kB) File type Wheel Python version py2.py3 Upload date Hashes View hashes
Filename, size brainweb-1.3.0.tar.gz (9.9 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page