Skip to main content

Multimodal models of 20 normal brains

Project description

The relevant file is README.ipynb, accessible via any of the following:

BrainWeb: Multimodal models of 20 normal brains

Download and Preprocessing for PET-MR Simulations

This notebook will not re-download/re-process files if they already exist.

  • Output data

  • ~/.brainweb/subject_*.npz: dtype(shape): float32(127, 344, 344)

  • Raw data source

  • ~/.brainweb/subject_*.bin.gz: dtype(shape): uint16(362, 434, 362)

  • Prerequisites

  • Python: requirements.txt (e.g. pip install -r ../../requirements.txt)


from __future__ import print_function, division
%matplotlib notebook
from utils import volshow
import utils as brainweb
import numpy as np
from os import path
from tqdm.auto import tqdm
import logging
logging.basicConfig(level=logging.INFO)

Raw Data

# download
files = brainweb.get_files()

# read
data = []
for f in tqdm(files, desc="Uncompressing into memory", unit="subject"):
    data.append(brainweb.load_file(f))
# show last subject
print(files[-1])
volshow(data[-1]);
~/.brainweb/subject_54.bin.gz
raw.png

Transform

Convert raw image data:

  • Siemens Biograph mMR resolution (~2mm) & dimensions (127, 344, 344)

  • PET/T1/T2/uMap intensities

  • randomised structure for PET/T1/T2

  • t (1 + g [2 G_sigma(r) - 1]), where

    • r = rand(127, 344, 344) in [0, 1),

    • Gaussian smoothing sigma = 1,

    • g = 1 for PET; 0.75 for MR, and

    • t = the PET or MR piecewise constant phantom

brainweb.seed(1337)

with tqdm(total=len(files), desc="mMR ground truths", unit="subject") as progress:
    for (f, vol) in zip(files, data):
        cache = f.replace('.bin.gz', '.npz')
        vol = brainweb.get_mmr(cache, vol,
                               petNoise=1, t1Noise=0.75, t2Noise=0.75,
                               petSigma=1, t1Sigma=1, t2Sigma=1)
        progress.update()
# show last subject
#f = files[-1].replace('.bin.gz', '.npz')
#vol = np.load(f)
print(f)
volshow([vol['PET' ][:, 100:-100, 100:-100],
         vol['uMap'][:, 100:-100, 100:-100],
         vol['T1'  ][:, 100:-100, 100:-100],
         vol['T2'  ][:, 100:-100, 100:-100]],
        cmaps=["hot", "bone", "Greys_r", "Greys_r"],
        titles=["PET", "uMap", "T1", "T2"]);
~/.brainweb/subject_54.bin.gz
mMR.png

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

brainweb-0.2.1.tar.gz (6.8 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

brainweb-0.2.1-py2.py3-none-any.whl (7.1 kB view details)

Uploaded Python 2Python 3

File details

Details for the file brainweb-0.2.1.tar.gz.

File metadata

  • Download URL: brainweb-0.2.1.tar.gz
  • Upload date:
  • Size: 6.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.8.0 tqdm/4.32.2 CPython/2.7.15

File hashes

Hashes for brainweb-0.2.1.tar.gz
Algorithm Hash digest
SHA256 aec97c9d79d73a982c667bef27f851aba2ef2c05db682727d6675637204a9d96
MD5 2fb6799a35774e61d6a18daebf9a0e30
BLAKE2b-256 fd5b991c8eef591b4474fe7399cd7deb683c4277b62e1c88f7aec0bcf5b42750

See more details on using hashes here.

File details

Details for the file brainweb-0.2.1-py2.py3-none-any.whl.

File metadata

  • Download URL: brainweb-0.2.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 7.1 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.8.0 tqdm/4.32.2 CPython/2.7.15

File hashes

Hashes for brainweb-0.2.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 21505717ee9ce4659f1e967dbe2c1dcc16d6a85fc256c21ccf0c755423fc8607
MD5 bef25a515e5fc8a10db8c32391ce12f5
BLAKE2b-256 ef7aad88f6e70ed034fb7af398d276ddc7126637c80c8497f6d4309378a47af8

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page