Skip to main content

Client application to interface with the BranchKey system

Project description

BranchKey Python Client Application

BK_logo

This application runs against the BranchKey backend aggregation service for Federated Learning. It provides a Python interface to login/logout a client, upload files to the system for aggregation, and download aggregated output files.

Install

  • pip install branchkey

Build Instructions

  • To build the dependencies:
    • make setup, or
    • pip install -r requirements.txt
  • To run the tests: make test
    • make test, or
    • python3 -m unittest -v

Usage instructions

  • To use a client:

    import json
    from branchkey.client import Client
    
    credentials = {"leaf_name": "leaf-1",
                   "leaf_id": "46780841-9787-41e6-ac14-e3ee160e158a",
                   "leaf_session_token": "46780841-9787-41e6-ac14-e3ee160e158a",
                   "performance_analyser_username": "hello",
                   "performance_analyser_password": "world",
                   "response_host":"response.branchkey.com"}
    
    host = "http://api.branchkey.com"
    
    # initialise the client
    c = Client(credentials,host)
    
    # authenticate your credentials and start the consumer
    c.authenticate()
    
    # upload the file to the system
    c.file_upload("./file/path.npy")
    
    # Download a file with the file_id value
    # same as the one received from the consumer
    # It downloads the files in the ./aggregated_files directory
    if not c.queue.empty():
          aggregation_id = c.queue.get(block=False)
          c.file_download(aggregation_id)
    
          # To push performance analysis metrics for this aggregation:
          # mode can be test, train or non-federated
          data = json.dumps({"key1":"val1","key2":"val2"})
          mode = "test"
          c.send_performance_metrics(aggregation_id, data, mode)
    

File format

Weights file in a numpy .npy format:

with open("./test.npy", "wb") as f:
    np.save(f, parameter_array)
[num_samples, [n_d parameter matrix]]
num_samples - the number of samples that contributed to this update
n_d parameter matrix - parameters

Required file format

The required numpy arrays after exports

[1329, list([array([[[[ 1.71775490e-01,    [[[ 8.74867663e-02,  5.19692302e-02, -1.64664671e-01,,          -2.23452481e-03,  1.11475676e-01],,    [-1.75505821e-02, -1...
(1329, [array([[[[ 1.71775490e-01,  3.02851666e-02,  2.90171858e-02,
          -4.27578250e-03,  1.14474617e-01],
         [-8.07138346e-03,  1.44909814e-01, -5.36724664e-02,
          -3.51673253e-02, -1.82426855e-01],
         [ 6.75795972e-02, -1.72839850e-01, -7.25025982e-02,
          -1.59504730e-02,  1.60634145e-01],
         [ 6.62277341e-02, -2.26575769e-02, -1.65369093e-01,
          -8.67117420e-02,  1.80021569e-01],
         [-6.11407161e-02, -1.59245610e-01,  1.45820528e-01,
          -5.40512279e-02, -5.19061387e-02]]],
        ....
         [-1.44068539e-01,  6.15987852e-02,  1.83321223e-01,
          -1.79076958e-02, -1.53445438e-01],
         [-7.76787996e-02,  7.64556080e-02,  9.43044946e-02,
           1.63337544e-01, -1.69042274e-01],
         [-8.55994076e-02, -1.23661250e-01,  1.48442864e-01,
          -1.35983482e-01,  2.05254350e-02]]]], dtype=float32), array([ 0.13065006,  0.12797254, -0.12818147, -0.09621437,  0.04100017,
       -0.07248228,  0.02753541,  0.00476395, -0.11270998,  0.11353076,
       -0.0167569 ,  0.12654744, -0.05019006, -0.07281244,  0.03892357,
       -0.09698197, -0.06845284, -0.04604543, -0.01372138, -0.052395  ,
        0.04833373,  0.16228785,  0.09982517,  0.19556762,  0.10631064,
        0.02496212, -0.14297573, -0.10442089,  0.01970248, -0.1684099 ,
       -0.05076171,  0.19325127], dtype=float32), array([[[[-3.42470817e-02,  8.76816106e-04, -2.13724039e-02,
          -2.62880027e-02, -1.86583996e-02],
         [ 2.56936941e-02, -1.97169576e-02, -3.45735364e-02,
          -4.32738848e-03, -1.22306980e-02],
         [ 8.36322457e-03,  3.26042138e-02, -1.50063485e-02,
          -1.85401291e-02,  2.39207298e-02],
         [-1.15280924e-02, -3.47947963e-02,  2.17274204e-02,
           1.80862695e-02,  2.19682772e-02],
...
etc

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

branchkey-2.4.2.tar.gz (8.9 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

branchkey-2.4.2-py3-none-any.whl (7.4 kB view details)

Uploaded Python 3

File details

Details for the file branchkey-2.4.2.tar.gz.

File metadata

  • Download URL: branchkey-2.4.2.tar.gz
  • Upload date:
  • Size: 8.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for branchkey-2.4.2.tar.gz
Algorithm Hash digest
SHA256 31fa6b26f60586cd73e4c50a20afeac5652ef8a5cef2337ddfa27d0b2603a5fc
MD5 a4507e57e1b8f3f0a485dddcc817086e
BLAKE2b-256 d868fbed38a0b209db4e2b2d223302d0d46564a804de2c694c307062ecc14164

See more details on using hashes here.

File details

Details for the file branchkey-2.4.2-py3-none-any.whl.

File metadata

  • Download URL: branchkey-2.4.2-py3-none-any.whl
  • Upload date:
  • Size: 7.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for branchkey-2.4.2-py3-none-any.whl
Algorithm Hash digest
SHA256 252be2336b5715982a44c2c0fc7291f1768bcfe518b91e6f2169dcd01cdf7bb8
MD5 93c0bfc16a8823417d62d1ffa3b33f6e
BLAKE2b-256 ae5b93c358aeca8206abbe2726d74e5932f9de50fb3c956ed85b8999be33f6cc

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page