Skip to main content

Tool for computing brain network stability, a biomarker for brain aging.

Project description

BRAin NEtwork STAbility

https://data.caltech.edu/badge/doi/10.1073/pnas.1913042117.svg https://img.shields.io/pypi/v/branesta.svg https://img.shields.io/travis/BotondA/branesta.svg Documentation Status https://img.shields.io/badge/License-MIT-brightgreen.svg

https://raw.githubusercontent.com/BotondA/branesta/v0.1.6/assets/logo_w_text.png

Introduction

Branesta is a tool for computing brain network stability, a biomarker for brain aging.

Please cite our article:

Mujica-Parodi, Lilianne R., et al. “Diet modulates brain network stability, a biomarker for brain aging, in young adults.” Proceedings of the National Academy of Sciences 117.11 (2020): 6170-6177. link: https://www.pnas.org/content/117/11/6170

Description

Brain network stability measures the extent of temporal reorganization that takes place in brain networks. Brain networks describe inter-regional communication across the brain. Lower network stability (represented by higher values) is related to weaker persistence of brain networks. The terms Network Stability and Network INstability are used interchangibly and they refer to the exact same metric.

The procedure of computing brain network stability is as follows: fMRI time-series that were previously parcelled into ROIs are first binned into time windows (=snapshots) of N timepoints without overlaps (N = window length). Next, pairwise correlations among all ROIs are computed separately for each time window. For the whole brain, brain network stability (scalar) is quantified by taking the l2 norm of the element-wise differences of correlation matrices corresponding to two different snapshots. τ is the number of steps separating two snapshots from which a given value of brain network stability is calculated from. For instance, if τ=1, two consecutive snapshots snapshots are used (e.g. #4 and #5). If τ=16, then 16 snapshots are separating the two snapshots (e.g. #3 and #19). Given a window length of 30 timepoints, if the time-series have a length of 720 timepoints, then there will be 24 snapshots (720/30=24). At τ=1, there are 23 instability values, whereas at τ=20, 4 different instability values would be computed.

For functional networks (labeled as “subnetworks” in our program), the procedure is analog to the above. The only difference is that once correlations are computed for each time window, element-wise differences are calculated only across those ROIs that spatially overlap with the functional network. In order to facilitate comparison of network instability among networks consisting of different number of nodes, network stability is normalized with the number of edges in the correlation matrix.

Features

  • computes network stability from parcelled time-series

  • performs computations at every τ

  • computes for subnetworks (optional)

  • allows user-defined time window length

  • easy to install (pip)

  • command line tool

Credits

This package was developed within the Laboratory for Computational Neurodiagnostics (LCNeuro) at Stony Brook University, New York.

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

History

0.1.9 (2021-4-16)

  • bug fixes

0.1.8 (2021-4-15)

  • code revisions, improved readability

0.1.7 (2020-12-22)

  • Logo fix

0.1.6 (2020-12-22)

  • Added logo

0.1.5 (2020-12-22)

  • Added unittests.

  • Updated imports.

0.1.4 (2020-11-29)

  • Updated logging.

0.1.3 (2020-11-28)

  • First standalone release.

0.1.2 (2020-11-28)

  • Updated dependencies.

0.1.1 (2020-11-27)

  • Added analysis module.

0.1.0 (2020-11-26)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

branesta-0.1.9.tar.gz (19.8 MB view details)

Uploaded Source

File details

Details for the file branesta-0.1.9.tar.gz.

File metadata

  • Download URL: branesta-0.1.9.tar.gz
  • Upload date:
  • Size: 19.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.1.post20201107 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.5

File hashes

Hashes for branesta-0.1.9.tar.gz
Algorithm Hash digest
SHA256 620394d535f7b7c427ed87670d79b54143e8d666281e68852a5107cb6ec8a917
MD5 1b53eae55c6e9fb59693f11f5a62f56d
BLAKE2b-256 ff8551ae6da02a124cdae6b638abdc9e9b79829193999f7d4f8eb4b28983230e

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page