Skip to main content

BraTS algorithms

Project description

BraTS

Python Versions Stable Version Documentation Status tests codecov License

Providing the top performing algorithms from the Brain Tumor Segmentation (BraTS) challenges, through an easy to use Python API powered by docker.

Features

  • Access to top-performing algorithms from recent BraTS challenges
  • Easy-to-use minimal API
  • Extensive documentation and examples

Installation

With a Python 3.8+ environment, you can install brats directly from PyPI:

pip install brats

[!IMPORTANT]
To run brats you require a Docker installation.
Many algorithms also require GPU support (NVIDIA Docker).
In case you do not have access to a Cuda-capable GPU, the overview tables in the Algorithms section indicate which algorithms are CPU compatible.

Docker and NVIDIA Container Toolkit Setup

Use Cases and Tutorials

A minimal example to create a segmentation could look like this:

from brats import AdultGliomaSegmenter
from brats.utils.constants import AdultGliomaAlgorithms

segmenter = AdultGliomaSegmenter(algorithm=AdultGliomaAlgorithms.BraTS23_1, cuda_devices="0")
# these parameters are optional, by default the winning algorithm will be used on cuda:0
segmenter.infer_single(
    t1c="path/to/t1c.nii.gz",
    t1n="path/to/t1n.nii.gz",
    t2f="path/to/t2f.nii.gz",
    t2w="path/to/t2w.nii.gz",
    output_file="segmentation.nii.gz",
)

For more examples and details please refer to our extensive Notebook tutorials here NBViewer (GitHub). For the best experience open the notebook in Colab.

Algorithms

Adult Glioma Segmentation

Class: brats.AdultGliomaSegmenter (Docs)

Year Rank Author Paper CPU Support Key Enum
2023 1st André Ferreira, et al. Link BraTS23_1
2023 2nd Andriy Myronenko, et al. N/A BraTS23_2
2023 3rd Fadillah Adamsyah Maani, et al. N/A BraTS23_3
BraTS-Africa Segmentation

Class: brats.AfricaSegmenter (Docs)

Year Rank Author Paper CPU Support Key Enum
2023 1st Andriy Myronenko, et al. TODO BraTS23_1
2023 2nd Alyssa R Amod, et al. N/A BraTS23_2
2023 3rd Ziyan Huang, et al. N/A BraTS23_3
Meningioma Segmentation

Class: brats.MeningiomaSegmenter (Docs)

Year Rank Author Paper CPU Support Key Enum
2023 1st Andriy Myronenko, et al. N/A BraTS23_1
2023 2nd Ziyan Huang, et al. N/A BraTS23_2
2023 3rd Zhifan Jiang et al. N/A BraTS23_3
Brain Metastases Segmentation

Class: brats.MetastasesSegmenter (Docs)

Year Rank Author Paper CPU Support Key Enum
2023 1st Andriy Myronenko, et al. N/A BraTS23_1
2023 2nd Siwei Yang, et al. N/A BraTS23_2
2023 3rd Ziyan Huang, et al. N/A BraTS23_3
Pediatric Segmentation

Class: brats.PediatricSegmenter (Docs)

Year Rank Author Paper CPU Support Key Enum
2023 1st Zhifan Jiang et al. N/A BraTS23_1
2023 2nd Andriy Myronenko, et al. N/A BraTS23_2
2023 3rd Yubo Zhou N/A BraTS23_3

Inpainting

Class: brats.Inpainter (Docs)

Year Rank Author Paper CPU Support Key Enum
2023 1st Juexin Zhang, et al. N/A BraTS23_1
2023 2nd Alicia Durrer, et al. N/A BraTS23_2
2023 3rd Jiayu Huo, et al. N/A BraTS23_3

Citation

If you use BraTS in your research, please cite it to support the development!

TODO: citation will be added asap

Contributing

We welcome all kinds of contributions from the community!

Reporting Bugs, Feature Requests and Questions

Please open a new issue here.

Code contributions

Nice to have you on board! Please have a look at our CONTRIBUTING.md file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

brats-0.0.9-py3-none-any.whl (30.0 kB view details)

Uploaded Python 3

File details

Details for the file brats-0.0.9-py3-none-any.whl.

File metadata

  • Download URL: brats-0.0.9-py3-none-any.whl
  • Upload date:
  • Size: 30.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for brats-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 6bdf3c3c41a762c4e68b0b72a19ca24bed91b9b7c5f8fe8502349e21524560fb
MD5 169896ef648d814fd6fda1e48f9fab00
BLAKE2b-256 cc555cc98cc6881772c613491ff3f765d7b486b40bca7696c2edc2e011c0a7b7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page