Skip to main content

BREW: Python Multiple Classifier System API

Project description

https://badge.fury.io/py/brew.png https://travis-ci.org/viisar/brew.png?branch=master Code Health https://coveralls.io/repos/github/viisar/brew/badge.svg?branch=master Join the chat at https://gitter.im/viisar/brew

brew: A Multiple Classifier Systems API

This project was started in 2014 by Dayvid Victor and Thyago Porpino
for the Multiple Classifier Systems class at Federal University of Pernambuco.
The aim of this project is to provide an easy API for Ensembling, Stacking,
Blending, Ensemble Generation, Ensemble Pruning, Dynamic Classifier Selection,
and Dynamic Ensemble Selection.

Features

  • General: Ensembling, Stacking and Blending.

  • Ensemble Classifier Generators: Bagging, Random Subspace, SMOTE-Bagging, ICS-Bagging, SMOTE-ICS-Bagging.

  • Dynamic Selection: Overall Local Accuracy (OLA), Local Class Accuracy (LCA), Multiple Classifier Behavior (MCB), K-Nearest Oracles Eliminate (KNORA-E), K-Nearest Oracles Union (KNORA-U), A Priori Dynamic Selection, A Posteriori Dynamic Selection, Dynamic Selection KNN (DSKNN).

  • Ensemble Combination Rules: majority vote, min, max, mean and median.

  • Ensemble Diversity Metrics: Entropy Measure E, Kohavi Wolpert Variance, Q Statistics, Correlation Coefficient p, Disagreement Measure, Agreement Measure, Double Fault Measure.

  • Ensemble Pruning: Ensemble Pruning via Individual Contribution (EPIC).

Example

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import itertools

import sklearn

from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier

from brew.base import Ensemble, EnsembleClassifier
from brew.stacking.stacker import EnsembleStack, EnsembleStackClassifier
from brew.combination.combiner import Combiner

from mlxtend.data import iris_data
from mlxtend.evaluate import plot_decision_regions

# Initializing Classifiers
clf1 = LogisticRegression(random_state=0)
clf2 = RandomForestClassifier(random_state=0)
clf3 = SVC(random_state=0, probability=True)

# Creating Ensemble
ensemble = Ensemble([clf1, clf2, clf3])
eclf = EnsembleClassifier(ensemble=ensemble, combiner=Combiner('mean'))

# Creating Stacking
layer_1 = Ensemble([clf1, clf2, clf3])
layer_2 = Ensemble([sklearn.clone(clf1)])

stack = EnsembleStack(cv=3)

stack.add_layer(layer_1)
stack.add_layer(layer_2)

sclf = EnsembleStackClassifier(stack)

clf_list = [clf1, clf2, clf3, eclf, sclf]
lbl_list = ['Logistic Regression', 'Random Forest', 'RBF kernel SVM', 'Ensemble', 'Stacking']

# Loading some example data
X, y = iris_data()
X = X[:,[0, 2]]

# Plotting Decision Regions
gs = gridspec.GridSpec(2, 3)
fig = plt.figure(figsize=(10, 8))

itt = itertools.product([0, 1, 2], repeat=2)

for clf, lab, grd in zip(clf_list, lbl_list, itt):
    clf.fit(X, y)
    ax = plt.subplot(gs[grd[0], grd[1]])
    fig = plot_decision_regions(X=X, y=y, clf=clf, legend=2)
    plt.title(lab)
plt.show()
decision regions plots

Dependencies

  • Python 2.7+

  • scikit-learn >= 0.15.2

  • Numpy >= 1.6.1

  • SciPy >= 0.9

  • Matplotlib >= 0.99.1 (examples, only)

  • mlxtend (examples, only)

Installing

You can easily install brew using pip:

pip install brew

or, if you prefer an up-to-date version, get it from here:

pip install git+https://github.com/viisar/brew.git

Important References

  • Kuncheva, Ludmila I. Combining pattern classifiers: methods and algorithms. John Wiley & Sons, 2014.

  • Zhou, Zhi-Hua. Ensemble methods: foundations and algorithms. CRC Press, 2012.

Documentation

The full documentation is at http://brew.rtfd.org.

History

0.1.0 (2014-11-12)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

brew-0.1.4.zip (48.8 kB view details)

Uploaded Source

File details

Details for the file brew-0.1.4.zip.

File metadata

  • Download URL: brew-0.1.4.zip
  • Upload date:
  • Size: 48.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for brew-0.1.4.zip
Algorithm Hash digest
SHA256 11f23fe972631685e2a146f91747f78bbcad9dd2e20e6ea84a3058459c605948
MD5 2f9561aea0c754570bc03f05e2dcbb8c
BLAKE2b-256 711975f6d42ca862c6b31e2da9864d94f59fe81978ac5d40c43937a1c17fd065

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page