BREW: Python Multiple Classifier System API
Project description
brew: A Multiple Classifier Systems API
Features
General: Ensembling, Stacking and Blending.
Ensemble Classifier Generators: Bagging, Random Subspace, SMOTE-Bagging, ICS-Bagging, SMOTE-ICS-Bagging.
Dynamic Selection: Overall Local Accuracy (OLA), Local Class Accuracy (LCA), Multiple Classifier Behavior (MCB), K-Nearest Oracles Eliminate (KNORA-E), K-Nearest Oracles Union (KNORA-U), A Priori Dynamic Selection, A Posteriori Dynamic Selection, Dynamic Selection KNN (DSKNN).
Ensemble Combination Rules: majority vote, min, max, mean and median.
Ensemble Diversity Metrics: Entropy Measure E, Kohavi Wolpert Variance, Q Statistics, Correlation Coefficient p, Disagreement Measure, Agreement Measure, Double Fault Measure.
Ensemble Pruning: Ensemble Pruning via Individual Contribution (EPIC).
Example
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import itertools
import sklearn
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from brew.base import Ensemble, EnsembleClassifier
from brew.stacking.stacker import EnsembleStack, EnsembleStackClassifier
from brew.combination.combiner import Combiner
from mlxtend.data import iris_data
from mlxtend.evaluate import plot_decision_regions
# Initializing Classifiers
clf1 = LogisticRegression(random_state=0)
clf2 = RandomForestClassifier(random_state=0)
clf3 = SVC(random_state=0, probability=True)
# Creating Ensemble
ensemble = Ensemble([clf1, clf2, clf3])
eclf = EnsembleClassifier(ensemble=ensemble, combiner=Combiner('mean'))
# Creating Stacking
layer_1 = Ensemble([clf1, clf2, clf3])
layer_2 = Ensemble([sklearn.clone(clf1)])
stack = EnsembleStack(cv=3)
stack.add_layer(layer_1)
stack.add_layer(layer_2)
sclf = EnsembleStackClassifier(stack)
clf_list = [clf1, clf2, clf3, eclf, sclf]
lbl_list = ['Logistic Regression', 'Random Forest', 'RBF kernel SVM', 'Ensemble', 'Stacking']
# Loading some example data
X, y = iris_data()
X = X[:,[0, 2]]
# Plotting Decision Regions
gs = gridspec.GridSpec(2, 3)
fig = plt.figure(figsize=(10, 8))
itt = itertools.product([0, 1, 2], repeat=2)
for clf, lab, grd in zip(clf_list, lbl_list, itt):
clf.fit(X, y)
ax = plt.subplot(gs[grd[0], grd[1]])
fig = plot_decision_regions(X=X, y=y, clf=clf, legend=2)
plt.title(lab)
plt.show()
Dependencies
Python 2.7+
scikit-learn >= 0.15.2
Numpy >= 1.6.1
SciPy >= 0.9
Matplotlib >= 0.99.1 (examples, only)
mlxtend (examples, only)
Installing
You can easily install brew using pip:
pip install brew
or, if you prefer an up-to-date version, get it from here:
pip install git+https://github.com/viisar/brew.git
Important References
Kuncheva, Ludmila I. Combining pattern classifiers: methods and algorithms. John Wiley & Sons, 2014.
Zhou, Zhi-Hua. Ensemble methods: foundations and algorithms. CRC Press, 2012.
Documentation
The full documentation is at http://brew.rtfd.org.
History
0.1.0 (2014-11-12)
First release on PyPI.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file brew-0.1.4.zip
.
File metadata
- Download URL: brew-0.1.4.zip
- Upload date:
- Size: 48.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 11f23fe972631685e2a146f91747f78bbcad9dd2e20e6ea84a3058459c605948 |
|
MD5 | 2f9561aea0c754570bc03f05e2dcbb8c |
|
BLAKE2b-256 | 711975f6d42ca862c6b31e2da9864d94f59fe81978ac5d40c43937a1c17fd065 |